5 research outputs found

    Inactivation of PRIM1 Function Sensitizes Cancer Cells to ATR and CHK1 Inhibitors

    No full text
    The phosphoinositide 3-kinase–related kinase ATR is a central regulator of the DNA damage response. Its chemical inhibition eliminates subsets of cancer cells in various tumor types. This effect is caused at least partly by the synthetically lethal relationship between ATR and certain DNA repair genes. In a previous screen using an siRNA library against DNA repair genes, we identified PRIM1, a part of the polymerase α-primase complex, as acting synthetically lethal with ATR. Applying a genetic ATR knock-in model of colorectal cancer cells, we confirmed that PRIM1 depletion inhibited proliferation of ATR-deficient cells and excluded artifacts due to clonal variation using an ATR reexpressing cell clone. We expanded these data by demonstrating in different cell lines that also chemical inhibition of ATR or its main effector kinase CHK1 reduces proliferation upon depletion of PRIM1. Mechanistically, PRIM1 depletion in ATR-deficient cells caused S-phase stasis in the absence of increased DNA damage followed by Wee1-mediated activation of caspase 8 and apoptosis. As PRIM1 inactivation sensitizes cancer cells to ATR and CHK1 inhibitors, mutations in PRIM1 or other components of the polymerase α-primase complex could represent novel targets for individualized tumor therapeutic approaches using ATR/CHK1 inhibitors, as has been previously demonstrated for POLD1, the catalytic subunit of polymerase δ

    SLAMF receptors negatively regulate B cell receptor signaling in chronic lymphocytic leukemia via recruitment of prohibitin-2

    No full text
    We identified a subset of Chronic Lymphocytic Leukemia (CLL) patients with high Signaling Lymphocytic Activation Molecule Family (SLAMF) receptor-related signaling that showed an indolent clinical course. Since SLAMF receptors play a role in NK cell biology, we reasoned that these receptors may impact NK cell-mediated CLL immunity. Indeed, our experiments showed significantly decreased degranulation capacity of primary NK cells from CLL patients expressing low levels of SLAMF1 and SLAMF7. Since the SLAM
    corecore