4 research outputs found

    Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies.

    No full text
    The epilepsies affect around 65 million people worldwide and have a substantial missing heritability component. We report a genome-wide mega-analysis involving 15,212 individuals with epilepsy and 29,677 controls, which reveals 16 genome-wide significant loci, of which 11 are novel. Using various prioritization criteria, we pinpoint the 21 most likely epilepsy genes at these loci, with the majority in genetic generalized epilepsies. These genes have diverse biological functions, including coding for ion-channel subunits, transcription factors and a vitamin-B6 metabolism enzyme. Converging evidence shows that the common variants associated with epilepsy play a role in epigenetic regulation of gene expression in the brain. The results show an enrichment for monogenic epilepsy genes as well as known targets of antiepileptic drugs. Using SNP-based heritability analyses we disentangle both the unique and overlapping genetic basis to seven different epilepsy subtypes. Together, these findings provide leads for epilepsy therapies based on underlying pathophysiology

    De-novo mutations in patients with chronic ultra-refractory epilepsy with onset after age five years

    No full text
    We set out to investigate whether a de-novo paradigm could explain genetic causes of chronic ultra-refractory epilepsy, with onset later than the typical age for the epileptic encephalopathies. We performed exome sequencing on nine adult patients with MRI-negative epilepsy and no preceding intellectual disability. All had an onset of seizures after five years old and had chronic ultra-refractory epilepsy defined here as having failed more than six anti-epileptic drugs and currently experiencing ≥4 disabling seizures per month. Parents were sequenced to identify de-novo mutations and these were assessed for likelihood of pathogenicity based on the American College of Medical Genetics and Genomics (ACMG) criteria. We confirmed the presence of functional and predicted-damaging de-novo mutations in 3/9 patients. One of these pathogenic de-novo mutations, in DNM1L, was previously reported in a patient with severe epilepsy and chronic pharmacoresistance adding to the evidence for DNM1L as an epilepsy gene. Exome sequencing is a successful strategy for identifying de-novo mutations in paediatric epileptic encephalopathies and rare neurological disorders. Our study demonstrates the potential benefit of considering ultra-refractory epilepsy patients with later onset for genetic testing. Identifying genetic mutations underpinning severe epilepsy of unknown aetiology may provide new insight into the underlying biology and offers the potential for therapeutic intervention in the form of precision medicine in older patients

    Assessing the genetic association between vitamin B6 metabolism and genetic generalized epilepsy.

    No full text
    Altered vitamin B6 metabolism due to pathogenic variants in the gene PNPO causes early onset epileptic encephalopathy, which can be treated with high doses of vitamin B6. We recently reported that single nucleotide polymorphisms (SNPs) that influence PNPO expression in the brain are associated with genetic generalized epilepsy (GGE). However, it is not known whether any of these GGE-associated SNPs influence vitamin B6 metabolite levels. Such an influence would suggest that vitamin B6 could play a role in GGE therapy. Here, we performed genome-wide association studies (GWAS) to assess the influence of GGE associated genetic variants on measures of vitamin B6 metabolism in blood plasma in 2232 healthy individuals. We also asked if SNPs that influence vitamin B6 were associated with GGE in 3122 affected individuals and 20,244 controls. Our GWAS of vitamin B6 metabolites reproduced a previous association and found a novel genome-wide significant locus. The SNPs in these loci were not associated with GGE. We found that 84 GGE-associated SNPs influence expression levels of PNPO in the brain as well as in blood. However, these SNPs were not associated with vitamin B6 metabolism in plasma. By leveraging polygenic risk scoring (PRS), we found suggestive evidence of higher catabolism and lower levels of the active and transport forms of vitamin B6 in GGE, although these findings require further replication

    Genomic and clinical predictors of lacosamide response in refractory epilepsies

    No full text
    Objective: Clinical and genetic predictors of response to antiepileptic drugs (AEDs) are largely unknown. We examined predictors of lacosamide response in a real-world clinical setting.Methods: We tested the association of clinical predictors with treatment response using regression modeling in a cohort of people with refractory epilepsy. Genetic assessment for lacosamide response was conducted via genome-wide association studies and exome studies, comprising 281 candidate genes.Results: Most patients (479/483) were treated with LCM in addition to other AEDs. Our results corroborate previous findings that patients with refractory genetic generalized epilepsy (GGE) may respond to treatment with LCM. No clear clinical predictors were identified. We then compared 73 lacosamide responders, defined as those experiencing greater than 75% seizure reduction or seizure freedom, to 495 nonresponders (Significance: No genetic predictor of lacosamide response was identified. Patients with refractory GGE might benefit from treatment with lacosamide.</p
    corecore