14 research outputs found
Contributions of chaperone/usher systems to cell binding, biofilm formation and Yersinia pestis virulence
Yersinia pestis genome sequencing projects have revealed six intact uncharacterized chaperone/
usher systems with the potential to play roles in plague pathogenesis. We cloned each locus and
expressed them in the Deltafim Escherichia coli strain AAEC185 to test the assembled Y. pestis
surface structures for various activities. Expression of each chaperone/usher locus gave rise to
specific novel fibrillar structures on the surface of E. coli. One locus, y0561-0563, was able to
mediate attachment to human epithelial cells (HEp-2) and human macrophages (THP-1) but not
mouse macrophages (RAW264.7), while several loci were able to facilitate E. coli biofilm
formation. When each chaperone/usher locus was deleted in Y. pestis, only deletion of the
previously described pH 6 antigen (Psa) chaperone/usher system resulted in decreased adhesion
and biofilm formation. Quantitative RT-PCR (qRT-PCR) revealed low expression levels for each
novel chaperone/usher system in vitro as well as in mouse tissues following intravenous infection.
However, a Y. pestis mutant in the chaperone/usher locus y1858-1862 was attenuated for
virulence in mice via the intravenous route of infection, suggesting that expression of this locus is,
at some stage, sufficient to affect the outcome of a plague infection. qRT-PCR experiments also
indicated that expression of the chaperone/usher-dependent capsule locus, caf1, was influenced
by oxygen availability and that the well-described chaperone/usher-dependent pilus, Psa, was
strongly induced in minimal medium even at 28 degrees C rather than 37 degrees C, a temperature previously
believed to be required for Psa expression. These data indicate several potential roles for the
novel chaperone/usher systems of Y. pestis in pathogenesis and infection-related functions such
as cell adhesion and biofilm formation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91950/1/2011 Microbiology - Contributions of chaperone usher systems to cell binding biofilm formation and Yersinia pestis virulence.pd
Harnessing DNA Synthesis to Develop Rapid Responses to Emerging and Pandemic Pathogens
Given the interconnected nature of our world today, emerging pathogens and pandemic outbreaks are an ever-growing threat to the health and economic stability of the global community. This is evident by the recent 2009 Influenza A (H1N1) pandemic, the SARS outbreak, as well as the ever-present threat of global bioterrorism. Fortunately, the biomedical community has been able to rapidly generate sequence data so these pathogens can be readily identified. To date, however, the utilization of this sequence data to rapidly produce relevant experimental results or actionable treatments is lagging in spite of obtained sequence data. Thus, a pathogenic threat that has emerged and/or developed into a pandemic can be rapidly identified; however, translating this identification into a targeted therapeutic or treatment that is rapidly available has not yet materialized. This commentary suggests that the growing technology of DNA synthesis should be fully implemented as a means to rapidly generate in vivo data and possibly actionable therapeutics soon after sequence data becomes available
Tailoring the Immune Response via Customization of Pathogen Gene Expression
The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe's phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe's gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development
Tailoring the Immune Response via Customization of Pathogen Gene Expression
The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe’s phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe’s gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development
Biogenesis of the Fraction 1 Capsule and Analysis of the Ultrastructure of Yersinia pestis▿
Analysis of a Yersinia pestis Δcaf1A mutant demonstrated that the Caf1A usher is required for the assembly and secretion of the fraction 1 capsule. The capsule assembled into thin fibrils and denser aggregates on the bacterial surface. Pilus-like fibers were also detected on the surface of Y. pestis. The capsule occasionally coated these fibers, suggesting how the capsule may cloak surface features to prevent host recognition