10 research outputs found

    Atovaquone: An Inhibitor of Oxidative Phosphorylation as Studied in Gynecologic Cancers

    Full text link
    Oxidative phosphorylation is an active metabolic pathway in cancer. Atovaquone is an oral medication that inhibits oxidative phosphorylation and is FDA-approved for the treatment of malaria. We investigated its potential anti-cancer properties by measuring cell proliferation in 2D culture. The clinical formulation of atovaquone, Mepron, was given to mice with ovarian cancers to monitor its effects on tumor and ascites. Patient-derived cancer stem-like cells and spheroids implanted in NSG mice were treated with atovaquone. Atovaquone inhibited the proliferation of cancer cells and ovarian cancer growth in vitro and in vivo. The effect of atovaquone on oxygen radicals was determined using flow and imaging cytometry. The oxygen consumption rate (OCR) in adherent cells was measured using a Seahorse XFe96 Extracellular Flux Analyzer. Oxygen consumption and ATP production were inhibited by atovaquone. Imaging cytometry indicated that the majority of the oxygen radical flux triggered by atovaquone occurred in the mitochondria. Atovaquone decreased the viability of patient-derived cancer stem-like cells and spheroids implanted in NSG mice. NMR metabolomics showed shifts in glycolysis, citric acid cycle, electron transport chain, phosphotransfer, and metabolism following atovaquone treatment. Our studies provide the mechanistic understanding and preclinical data to support the further investigation of atovaquone’s potential as a gynecologic cancer therapeutic

    A phase I study of talazoparib (BMN 673) combined with carboplatin and paclitaxel in patients with advanced solid tumors (NCI9782)

    Full text link
    Background Inhibitors of poly(ADP‐ribose) polymerase (PARP) proteins potentiate antitumor activity of platinum chemotherapy. This study sought to determine the safety and tolerability of PARP inhibitor talazoparib with carboplatin and paclitaxel. Methods We conducted a phase I study of talazoparib with carboplatin AUC5‐6 and paclitaxel 80 mg/m2 days 1, 8, 15 of 21‐day cycles in patients with advanced solid tumors. Patients enrolled using a 3 + 3 design in two cohorts with talazoparib for 7 (schedule A) or 3 days (schedule B). After induction with 4–6 cycles of triplet therapy, patients received one of three maintenance options: (a) continuation of triplet (b) carboplatin/talazoparib, or (c) talazoparib monotherapy. Results Forty‐three patients were treated. The MTD for both schedules was talazoparib 250mcg daily. The main toxicity was myelosuppression including grade 3/4 hematologic treatment‐related adverse events (TRAEs). Dose modification occurred in 87% and 100% of patients for schedules A and B, respectively. Discontinuation due to TRAEs was 13% in schedule A and 10% in B. Ten out of 22 evaluable patients in schedule A and 5/16 patients in schedule B had a complete or partial response. Twelve out of 43 patients received ≥6 cycles of talazoparib after induction, with a 13‐month median duration of maintenance. Conclusion We have established the recommended phase II dose of Talazoparib at 250mcg on a 3‐ or 7‐day schedule with carboplatin AUC6 and paclitaxel 80 mg/m2 on days 1, 8, 15 of 21‐day cycles. This regimen is associated with significant myelosuppression, and in addition to maximizing supportive care, modification of the chemotherapy component would be a consideration for further development of this combination with the schedules investigated in this study

    A phase I study of talazoparib (BMN 673) combined with carboplatin and paclitaxel in patients with advanced solid tumors (NCI9782)

    Full text link
    Background: Inhibitors of poly(ADP-ribose) polymerase (PARP) proteins potentiate antitumor activity of platinum chemotherapy. This study sought to determine the safety and tolerability of PARP inhibitor talazoparib with carboplatin and paclitaxel. Methods: We conducted a phase I study of talazoparib with carboplatin AUC5-6 and paclitaxel 80 mg/m2 days 1, 8, 15 of 21-day cycles in patients with advanced solid tumors. Patients enrolled using a 3 + 3 design in two cohorts with talazoparib for 7 (schedule A) or 3 days (schedule B). After induction with 4-6 cycles of triplet therapy, patients received one of three maintenance options: (a) continuation of triplet (b) carboplatin/talazoparib, or (c) talazoparib monotherapy. Results: Forty-three patients were treated. The MTD for both schedules was talazoparib 250mcg daily. The main toxicity was myelosuppression including grade 3/4 hematologic treatment-related adverse events (TRAEs). Dose modification occurred in 87% and 100% of patients for schedules A and B, respectively. Discontinuation due to TRAEs was 13% in schedule A and 10% in B. Ten out of 22 evaluable patients in schedule A and 5/16 patients in schedule B had a complete or partial response. Twelve out of 43 patients received ≥6 cycles of talazoparib after induction, with a 13-month median duration of maintenance. Conclusion: We have established the recommended phase II dose of Talazoparib at 250mcg on a 3- or 7-day schedule with carboplatin AUC6 and paclitaxel 80 mg/m2 on days 1, 8, 15 of 21-day cycles. This regimen is associated with significant myelosuppression, and in addition to maximizing supportive care, modification of the chemotherapy component would be a consideration for further development of this combination with the schedules investigated in this study
    corecore