51 research outputs found

    MALDI Mass Spectrometry Imaging for the Discovery of Prostate Carcinoma Biomarkers

    Get PDF
    The elucidation of new biological markers of prostate cancer (PCa) should aid in the detection, and prognosis of this disease. Diagnostic decision making by pathologists in prostate cancer is highly dependent on tissue morphology. The ability to localize disease-specific molecular changes in tissue would help improve this critical pathology decision making process. Direct profiling of proteins in tissue sections using MALDI imaging mass spectrometry (MALDI-IMS) has the power to link molecular detail to morphological and pathological changes, enhancing the ability to identify candidates for new specific biomarkers. However, critical questions remain regarding the integration of this technique with clinical decision making. To address these questions, and to investigate the potential of MALDI-IMS for the diagnosis of prostate cancer, we have used this approach to analyze prostate tissue for the determination of the cellular origins of different protein signals to improve cancer detection and to identify specific protein markers of PCa. We found that specific protein/peptide expression changes correlated with the presence or absence of prostate cancer as well as the presence of micro-metastatic disease. Additionally, the over-expression of a single peptide (m/z = 4355) was able to accurately define primary cancer tissue from adjacent normal tissue. Tandem mass spectrometry analysis identified this peptide as a fragment of MEKK2, a member of the MAP kinase signaling pathway. Validation of MEKK2 overexpression in moderately differentiated PCa and prostate cancer cell lines was performed using immunohistochemistry and Western Blot analysis. Classification algorithms using specific ions differentially expressed in PCa tissue and a ROC cut-off value for the normalized intensity of the MEKK2 fragment at m/z 4355 were used to classify a blinded validation set. Finally, the optimization of sample processing in a new fixative which preserves macromolecules has led to improved through-put of samples making MALDI-IMS more compatible with current histological applications, facilitating its implementation in a clinical setting. This study highlights the potential of MALDI-IMS to define the molecular events involved in prostate tumorigenesis and demonstrates the applicability of this approach to clinical diagnostics as an aid to pathological decision making in prostate cancer

    Adjacent Slice Prostate Cancer Prediction to Inform MALDI Imaging Biomarker Analysis

    Get PDF
    Prostate cancer is the second most common type of cancer among men in US [1]. Traditionally, prostate cancer diagnosis is made by the analysis of prostate-specific antigen (PSA) levels and histopathological images of biopsy samples under microscopes. Proteomic biomarkers can improve upon these methods. MALDI molecular spectra imaging is used to visualize protein/peptide concentrations across biopsy samples to search for biomarker candidates. Unfortunately, traditional processing methods require histopathological examination on one slice of a biopsy sample while the adjacent slice is subjected to the tissue destroying desorption and ionization processes of MALDI. The highest confidence tumor regions gained from the histopathological analysis are then mapped to the MALDI spectra data to estimate the regions for biomarker identification from the MALDI imaging. This paper describes a process to provide a significantly better estimate of the cancer tumor to be mapped onto the MALDI imaging spectra coordinates using the high confidence region to predict the true area of the tumor on the adjacent MALDI imaged slice

    TELEX HEBDOMADAIRE NR 186 DU 12 OCTOBRE 1984 ADRESSE A L'ENSEMBLE DES DELEGATIONS EXTERIEURES ET BUREAUX DE PRESS ET D'INFORMATION INDEPENDANTS DANS LES PAYS TIERS = WEEKLY MEMO NO. 186 ON OCTOBER 12, 1984 TO FOREIGN DELEGATIONS AND PRESS BUREAUS OF THIRD COUNTRIES

    Get PDF
    Inhibitory activities against BoNT/A LC and holotoxin in proteolytic and cell-based assay for all tested compounds; fluorescence and UV–vis spectra for determination of 16 binding to HSA and AGP; ligand interaction diagrams, docking scores, and docking–in vitro inhibitory activity correlations; spectral and analytical data for all synthesized compounds; detailed procedures for the determination of the HPLC purity.Supporting information I for: Konstantinović, J. M., Kiris, E., Kota, K. P., Kugelman-Tonos, J., Videnović, M., Cazares, L. H., Terzić-Jovanović, N., Verbić, T., Anđelković, B. D., Duplantier, A. J., Bavari, S.,& Šolaja, B. (2018). New Steroidal 4-Aminoquinolines Antagonize Botulinum Neurotoxin Serotype A in Mouse Embryonic Stem Cell Derived Motor Neurons in Postintoxication Model. Journal of Medicinal Chemistry, American Chemical Society (ACS)., 61(4), 1595-1608. [https://doi.org/10.1021/acs.jmedchem.7b01710]The published version of the article: [https://cer.ihtm.bg.ac.rs/handle/123456789/2325]The peer-reviewed version of the article: [http://cer.ihtm.bg.ac.rs/handle/123456789/2935]Additional supporting information (NMR spectra and HPLC purity spectra of all tested compounds): [https://cer.ihtm.bg.ac.rs/handle/123456789/4516]Molecular formula strings and additional data: [https://cer.ihtm.bg.ac.rs/handle/123456789/4517

    Supporting Information II for: "New Steroidal 4-Aminoquinolines Antagonize Botulinum Neurotoxin Serotype A in Mouse Embryonic Stem Cell Derived Motor Neurons in Postintoxication Model"

    Get PDF
    NMR spectra and HPLC purity spectra of all tested compoundsSupporting information II for: Konstantinović, J. M., Kiris, E., Kota, K. P., Kugelman-Tonos, J., Videnović, M., Cazares, L. H., Terzić-Jovanović, N., Verbić, T., Anđelković, B. D., Duplantier, A. J., Bavari, S.,& Šolaja, B. (2018). New Steroidal 4-Aminoquinolines Antagonize Botulinum Neurotoxin Serotype A in Mouse Embryonic Stem Cell Derived Motor Neurons in Postintoxication Model. Journal of Medicinal Chemistry, American Chemical Society (ACS)., 61(4), 1595-1608. [https://doi.org/10.1021/acs.jmedchem.7b01710]The published version of the article: [https://cer.ihtm.bg.ac.rs/handle/123456789/2325]The peer-reviewed version of the article: [http://cer.ihtm.bg.ac.rs/handle/123456789/2935]Additional supporting information: [https://cer.ihtm.bg.ac.rs/handle/123456789/4515]Molecular formula strings and additional data: [https://cer.ihtm.bg.ac.rs/handle/123456789/4517

    A Multicomponent Animal Virus Isolated from Mosquitoes

    Get PDF
    RNA viruses exhibit a variety of genome organization strategies, including multicomponent genomes in which each segment is packaged separately. Although multicomponent genomes are common among viruses infecting plants and fungi, their prevalence among those infecting animals remains unclear. We characterize a multicomponent RNA virus isolated from mosquitoes, designated Guaico Culex virus (GCXV). GCXV belongs to a diverse clade of segmented viruses (Jingmenvirus) related to the prototypically unsegmented Flaviviridae. The GCXV genome comprises five segments, each of which appears to be separately packaged. The smallest segment is not required for replication, and its presence is variable in natural infections. We also describe a variant of Jingmen tick virus, another Jingmenvirus, sequenced from a Ugandan red colobus monkey, thus expanding the host range of this segmented and likely multicomponent virus group. Collectively, this study provides evidence for the existence of multicomponent animal viruses and their potential relevance for animal and human health.RNA viruses exhibit a variety of genome organization strategies, including multicomponent genomes in which each segment is packaged separately. Although multicomponent genomes are common among viruses infecting plants and fungi, their prevalence among those infecting animals remains unclear. We characterize a multicomponent RNA virus isolated from mosquitoes, designated Guaico Culex virus (GCXV). GCXV belongs to a diverse clade of segmented viruses (Jingmenvirus) related to the prototypically unsegmented Flaviviridae. The GCXV genome comprises five segments, each of which appears to be separately packaged. The smallest segment is not required for replication, and its presence is variable in natural infections. We also describe a variant of Jingmen tick virus, another Jingmenvirus, sequenced from a Ugandan red colobus monkey, thus expanding the host range of this segmented and likely multicomponent virus group. Collectively, this study provides evidence for the existence of multicomponent animal viruses and their potential relevance for animal and human health

    CCL5-CCR5 interactions modulate metabolic events during tumor onset to promote tumorigenesis

    Full text link
    Abstract Background In earlier studies we have shown that CCL5 activation of CCR5 induces the proliferation and survival of breast cancer cells in a mechanistic target of rapamycin (mTOR)-dependent manner and that this is in part due to CCR5-mediated increases in glycolytic metabolism. Methods Using the MDA-MB-231 triple negative human breast cancer cell line and mouse mammary tumor virus – polyomavirus middle T-antigen (MMTV-PyMT) mouse primary breast cancer cells, we conducted in vivo tumor transplant experiments to examine the effects of CCL5-CCR5 interactions in the context of regulating tumor metabolism. Additionally, we employed Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry imaging (MALDI-FTICR-MSI) to evaluate tumor utilization of cellular metabolites. Results We provide evidence that, in the absence of CCR5, the early events associated with rapid tumor growth in the MMTV-PyMT mouse model of spontaneous breast cancer development, are diminished, as demonstrated by a delay in tumor onset. In tumor transplant studies into immunocompromised mice we identify a direct correlation between reduced tumor proliferation and decreased metabolic activity, specifically associated with tumor expression of CCR5. The reduction in tumorigenesis is accompanied by decreases in glucose uptake, glucose transporter-1 (GLUT-1) cell surface expression, intracellular ATP and lactate levels, as well as reduced CCL5 production. Using MALDI-FTICR-MS, we show that the rapid early tumor growth of CCR5+/+ triple negative breast cancer cells in vivo is attributable to increased levels of glycolytic intermediates required for anabolic processes, in contrast to the slower growth rate of their corresponding CCR5−/− cells, that exhibit reduced glycolytic metabolism. Conclusions These findings suggest that CCL5-CCR5 interactions in the tumor microenvironment modulate metabolic events during tumor onset to promote tumorigenesis

    Additional file 4: Figure S4. of CCL5-CCR5 interactions modulate metabolic events during tumor onset to promote tumorigenesis

    Full text link
    Generation of MDA-MB-231.CCR5−/− using CRISPR/Cas9. The knockout cassette carries puromycin resistance. A Candidate MDA-MB-231.CCR5−/− cells were first screened for viability in the presence of 1 μg/mL of puromycin. Subsequently, candidate MDA-MB-231.CCR5−/− cell lines were confirmed CCR5 null by B PCR and C staining with an anti-CCR5 antibody. (PDF 129 kb
    • …
    corecore