7 research outputs found
Successful Treatment of an Acinar Pancreatic Carcinoma in an Inland Bearded Dragon (<i>Pogona vitticeps</i>): A Case Report
An adult, 362 g, male, intact inland bearded dragon (Pogona vitticeps) was admitted to a veterinary clinic due to a temporary cloacal prolapse and a two-week history of reduced overall condition and forage intake. Physical examination revealed an approximately 2 × 1 cm round-shaped, rigid intracoelomic tissue mass. Multiple sand deposits were present on the cloacal mucous membranes, though no signs of cloacal prolapse were present. The lizard was otherwise responsive but showed reduced body tension and movement behavior. Initial fecal examination revealed a high-grade oxyuriasis. A 2 × 1.5 cm sized intracoelomic, well-vascularized, round-shaped mass was subsequently visualized by ultrasonography. After a two-day stabilization therapy, the intracoelomic mass was removed by performing a standard ventral coeliotomy under general anesthesia. Histopathological examination of the excised mass revealed an acinar pancreatic adenocarcinoma with infiltration of the peritumorous connective soft tissue. The lizard remained at the clinic for a further seven days. Its postsurgical condition improved slowly. However, the lizard started regular forage intake 10 days after surgery, and general behavior enhanced constantly within the following three weeks. The animal was presented for a follow-up six weeks after surgery, showing bright and alert behavior with no signs of disease or illness. The lizard was re-examined 20 months after the initial presentation due to a reduced overall condition and reduced food intake. Blood chemistry evaluation revealed markedly decreased protein parameters, and moderate ascites was identified ultrasonographically. A distinct association with the preceding neoplastic disease could not be made, and the lizard returned to its regular condition under supportive therapy within three weeks. To the authors’ knowledge, this is the first report of successful treatment of a pancreatic carcinoma in a bearded dragon
Double‐edged effects of tamoxifen‐in‐oil‐gavage on an infectious murine model for multiple sclerosis
Tamoxifen gavage is a commonly used method to induce genetic modifications in cre-loxP systems. As a selective estrogen receptor modulator (SERM), the compound is known to have immunomodulatory and neuroprotective properties in non-infectious central nervous system (CNS) disorders. It can even cause complete prevention of lesion development as seen in experimental autoimmune encephalitis (EAE). The effect on infectious brain disorders is scarcely investigated. In this study, susceptible SJL mice were infected intracerebrally with Theiler's murine encephalomyelitis virus (TMEV) and treated three times with a tamoxifen-in-oil-gavage (TOG), resembling an application scheme for genetically modified mice, starting at 0, 18, or 38 days post infection (dpi). All mice developed ‘TMEV-induced demyelinating disease’ (TMEV-IDD) resulting in inflammation, axonal loss, and demyelination of the spinal cord. TOG had a positive effect on the numbers of oligodendrocytes and oligodendrocyte progenitor cells, irrespective of the time point of application, whereas late application (starting 38 dpi) was associated with increased demyelination of the spinal cord white matter 85 dpi. Furthermore, TOG had differential effects on the CD4+ and CD8+ T cell infiltration into the CNS, especially a long lasting increase of CD8+ cells was detected in the inflamed spinal cord, depending of the time point of TOG application. Number of TMEV-positive cells, astrogliosis, astrocyte phenotype, apoptosis, clinical score, and motor function were not measurably affected. These data indicate that tamoxifen gavage has a double-edged effect on TMEV-IDD with the promotion of oligodendrocyte differentiation and proliferation, but also increased demyelination, depending on the time point of application. The data of this study suggest that tamoxifen has also partially protective functions in infectious CNS disease. These effects should be considered in experimental studies using the cre-loxP system, especially in models investigating neuropathologies
Intact Type I Interferon Receptor Signaling Prevents Hepatocellular Necrosis but Not Encephalitis in a Dose-Dependent Manner in Rift Valley Fever Virus Infected Mice
Rift Valley fever (RVF) is a zoonotic and emerging disease, caused by the RVF virus (RVFV). In ruminants, it leads to “abortion storms” and enhanced mortality rates in young animals, whereas in humans it can cause symptoms like severe hemorrhagic fever or encephalitis. The role of the innate and adaptive immune response in disease initiation and progression is still poorly defined. The present study used the attenuated RVFV strain clone 13 to investigate viral spread, tissue tropism, and histopathological lesions after intranasal infection in C57BL/6 wild type (WT) and type I interferon (IFN-I) receptor I knockout (IFNAR−/−) mice. In WT mice, 104 PFU RVFV (high dose) resulted in a fatal encephalitis, but no hepatitis 7–11 days post infection (dpi), whereas 103 PFU RVFV (low dose) did not cause clinical disease or significant histopathological lesions in liver and the central nervous system (CNS). In contrast, IFNAR−/− mice infected with 103 PFU RVFV developed hepatocellular necrosis resulting in death at 2–5 dpi and lacked encephalitis. These results show that IFNAR signaling prevents systemic spread of the attenuated RVFV strain clone 13, but not the dissemination to the CNS and subsequent fatal disease. Consequently, neurotropic viruses may be able to evade antiviral IFN-I signaling pathways by using the transneuronal instead of the hematogenous route
Vascular Inflammation Is Associated with Loss of Aquaporin 1 Expression on Endothelial Cells and Increased Fluid Leakage in SARS-CoV-2 Infected Golden Syrian Hamsters
Vascular changes represent a characteristic feature of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection leading to a breakdown of the vascular barrier and subsequent edema formation. The aim of this study was to provide a detailed characterization of the vascular alterations during SARS-CoV-2 infection and to evaluate the impaired vascular integrity. Groups of ten golden Syrian hamsters were infected intranasally with SARS-CoV-2 or phosphate-buffered saline (mock infection). Necropsies were performed at 1, 3, 6, and 14 days post-infection (dpi). Lung samples were investigated using hematoxylin and eosin, alcian blue, immunohistochemistry targeting aquaporin 1, CD3, CD204, CD31, laminin, myeloperoxidase, SARS-CoV-2 nucleoprotein, and transmission electron microscopy. SARS-CoV-2 infected animals showed endothelial hypertrophy, endothelialitis, and vasculitis. Inflammation mainly consisted of macrophages and lower numbers of T-lymphocytes and neutrophils/heterophils infiltrating the vascular walls as well as the perivascular region at 3 and 6 dpi. Affected vessels showed edema formation in association with loss of aquaporin 1 on endothelial cells. In addition, an ultrastructural investigation revealed disruption of the endothelium. Summarized, the presented findings indicate that loss of aquaporin 1 entails the loss of intercellular junctions resulting in paracellular leakage of edema as a key pathogenic mechanism in SARS-CoV-2 triggered pulmonary lesions
SARS-CoV-2 Infection Dysregulates Cilia and Basal Cell Homeostasis in the Respiratory Epithelium of Hamsters
Similar to many other respiratory viruses, SARS-CoV-2 targets the ciliated cells of the respiratory epithelium and compromises mucociliary clearance, thereby facilitating spread to the lungs and paving the way for secondary infections. A detailed understanding of mechanism involved in ciliary loss and subsequent regeneration is crucial to assess the possible long-term consequences of COVID-19. The aim of this study was to characterize the sequence of histological and ultrastructural changes observed in the ciliated epithelium during and after SARS-CoV-2 infection in the golden Syrian hamster model. We show that acute infection induces a severe, transient loss of cilia, which is, at least in part, caused by cilia internalization. Internalized cilia colocalize with membrane invaginations, facilitating virus entry into the cell. Infection also results in a progressive decline in cells expressing the regulator of ciliogenesis FOXJ1, which persists beyond virus clearance and the termination of inflammatory changes. Ciliary loss triggers the mobilization of p73+ and CK14+ basal cells, which ceases after regeneration of the cilia. Although ciliation is restored after two weeks despite the lack of FOXJ1, an increased frequency of cilia with ultrastructural alterations indicative of secondary ciliary dyskinesia is observed. In summary, the work provides new insights into SARS-CoV-2 pathogenesis and expands our understanding of virally induced damage to defense mechanisms in the conducting airways
SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters
Since its discovery in 2019, multiple variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been identified. This study investigates virus spread and associated pathology in the upper and lower respiratory tracts of Syrian golden hamsters at 4 days post intranasal SARS-CoV-2 Omicron infection, in comparison to infection with variants of concern (VOCs) Gamma and Delta as well as ancestral strain 614 G. Pathological changes in the upper and lower respiratory tract of VOC Omicron infected hamsters are milder than those caused by other investigated strains. VOC Omicron infection causes a mild rhinitis with little involvement of the olfactory epithelium and minimal lesions in the lung, with frequent sparing of the alveolar compartment. Similarly, viral antigen, RNA and infectious virus titers are lower in respiratory tissues of VOC Omicron infected hamsters. These findings demonstrate that the variant has a decreased pathogenicity for the upper and lower respiratory tract of hamsters