290 research outputs found
A universal, turbulence-regulated star formation law: from Milky Way clouds to high-redshift disk and starburst galaxies
Whilst the star formation rate (SFR) of molecular clouds and galaxies is key
in understanding galaxy evolution, the physical processes which determine the
SFR remain unclear. This uncertainty about the underlying physics has resulted
in various different star formation laws, all having substantial intrinsic
scatter. Extending upon previous works that define the column density of star
formation (Sigma_SFR) by the gas column density (Sigma_gas), we develop a new
universal star formation (SF) law based on the multi-freefall prescription of
gas. This new SF law relies predominantly on the probability density function
(PDF) and on the sonic Mach number of the turbulence in the star-forming
clouds. By doing so we derive a relation where the star formation rate (SFR)
correlates with the molecular gas mass per multi-freefall time, whereas
previous models had used the average, single-freefall time. We define a new
quantity called maximum (multi-freefall) gas consumption rate (MGCR) and show
that the actual SFR is only about 0.4% of this maximum possible SFR, confirming
the observed low efficiency of star formation. We show that placing
observations in this new framework (Sigma_SFR vs. MGCR) yields a significantly
improved correlation with 3-4 times reduced scatter compared to previous SF
laws and a goodness-of-fit parameter R^2=0.97. By inverting our new
relationship, we provide sonic Mach number predictions for kpc-scale
observations of Local Group galaxies as well as unresolved observations of
local and high-redshift disk and starburst galaxies that do not have
independent, reliable estimates for the turbulent cloud Mach number.Comment: 6 pages, 2 figures, Accepted for publication in ApJ Letters, Movie
available here:
http://www.mso.anu.edu.au/~chfeder/pubs/universal_sf_law/universal_sf_law.htm
The metallicity evolution of star-forming galaxies from redshift 0 to 3: Combining magnitude-limited survey with gravitational lensing
We present a comprehensive observational study of the gas-phase metallicity of star-forming galaxies from z ∼ 0 → 3. We combine our new sample of gravitationally lensed galaxies with existing lensed and non-lensed samples to conduct a large investiga
The Host Galaxy of GRB 060505: Host ISM Properties
We investigate the ISM environment of GRB 060505. Using optical emission-line
diagnostic ratios, we compare the ISM properties of the GRB 060505 host region
with the hosts of unambiguous long- and short-duration GRBs. We show that the
metallicity, ionization state, and star formation rate of the GRB 060505
environment are more consistent with short-duration GRBs than with
long-duration GRBs. We compare the metallicity and star formation rates of the
GRB 060505 region with four other star-forming regions within the GRB 060505
host galaxy. We find no significant change in metallicity or star formation
rate between the GRB 060505 region and the other four host regions. Our results
are consistent with a compact-object-merger progenitor for GRB 060505.Comment: 7 pages, two figures; accepted for publication in ApJ
Galaxy mergers drive shocks: An integral field study of goals galaxies
We present an integral field spectroscopic study of radiative shocks in 27 nearby ultraluminous and luminous infrared galaxies (U/LIRGs) from the Great Observatory All-sky LIRG Survey, a subset of the Revised Bright Galaxy Sample. Our analysis of the resolved spectroscopic data from the Wide Field Spectrograph focuses on determining the detailed properties of the emission-line gas, including a careful treatment of multicomponent emission-line profiles. The resulting information obtained from the spectral fits is used to map the kinematics of the gas, sources of ionizing radiation, and feedback present in each system. The resulting properties are tracked as a function of merger stage. Using emission-line flux ratios and velocity dispersions, we find evidence for widespread, extended shock excitation in many local U/LIRGs. These low-velocity shocks become an increasingly important component of the optical emission lines as a merger progresses. We find that shocks may account for as much as half of the Hα luminosity in the latest-stage mergers in our sample. We discuss some possible implications of our result and consider the presence of active galactic nuclei and their effects on the spectra in our sample
Composite spectra in merging U/LIRGs caused by shocks
We present a key result from our optical integral field spectroscopic survey of 27 nearby ultraluminous and luminous infrared galaxies (U/LIRGs) from the Great Observatory All-Sky LIRG Survey. Using spatially resolved multi-component emission line fittin
- …