178 research outputs found

    Cross-Edge Orchestration of Serverless Functions with Probabilistic Caching

    Get PDF
    Serverless edge computing adopts an event-based paradigm that provides back-end services and dynamically provisions resources as needed, resulting in efficient resource utilization. To improve the end-to-end latency and revenue, service providers need to optimize the number and placement of serverless containers while considering the system cost (i.e., latency cost and container running cost) incurred by the provisioning. The particular reason for this circumstance is that frequently creating and destroying containers not only increases the system cost but also degrades the time responsiveness due to the cold-start process. Function caching is a common approach to mitigate the coldstart issue. However, function caching requires extra hardware resources and hence incurs extra system costs. Furthermore, the dynamic and bursty nature of serverless invocations remains an under-explored area. Hence, it is vitally important for service providers to conduct a context-aware request distribution and container caching policy for serverless edge computing. In this paper, we study the request distribution and container caching problem in serverless edge computing. We prove the proposed problem is NP-hard and hence difficult to find a global optimal solution. We jointly consider the distributed and resourceconstrained nature of edge computing and propose an optimized request distribution algorithm that adapts to the dynamics of serverless invocations with a theoretical performance guarantee. Also, we propose a context-aware probabilistic caching policy that incorporates a number of characteristics of serverless invocations. Via simulation and implementation results, we demonstrate the superiority of the proposed algorithm by outperforming existing caching policies in terms of the overall system cost and cold-start frequency by up to 62.1&amp;#x0025; and 69.1&amp;#x0025;, respectively.</p

    Cross-Edge Orchestration of Serverless Functions with Probabilistic Caching

    Full text link
    Serverless edge computing adopts an event-based paradigm that provides back-end services on an as-used basis, resulting in efficient resource utilization. To improve the end-to-end latency and revenue, service providers need to optimize the number and placement of serverless containers while considering the system cost incurred by the provisioning. The particular reason for this circumstance is that frequently creating and destroying containers not only increases the system cost but also degrades the time responsiveness due to the cold-start process. Function caching is a common approach to mitigate the coldstart issue. However, function caching requires extra hardware resources and hence incurs extra system costs. Furthermore, the dynamic and bursty nature of serverless invocations remains an under-explored area. Hence, it is vitally important for service providers to conduct a context-aware request distribution and container caching policy for serverless edge computing. In this paper, we study the request distribution and container caching problem in serverless edge computing. We prove the proposed problem is NP-hard and hence difficult to find a global optimal solution. We jointly consider the distributed and resource constrained nature of edge computing and propose an optimized request distribution algorithm that adapts to the dynamics of serverless invocations with a theoretical performance guarantee. Also, we propose a context-aware probabilistic caching policy that incorporates a number of characteristics of serverless invocations. Via simulation and implementation results, we demonstrate the superiority of the proposed algorithm by outperforming existing caching policies in terms of the overall system cost and cold-start frequency by up to 62.1% and 69.1%, respectively

    Facile Synthesis and Special Phase Transformation of Hydrophilic Iron Oxides Nanoparticles

    Get PDF
    Superparamagnetic iron oxide nanoparticles (SPIONs), γ-Fe2O3, with hydrophilic surfaces are fabricated in ethylene glycol solutions, without surfactant or additive, by solvothermal process from α-Fe2O3 nanoparticle as precursors. With the addition of a trace of hydrazine hydrate, the cubic phase Fe3O4 nanoparticles are obtained instead of γ-Fe2O3. The saturation magnetization value of γ-Fe2O3 nanoparticles is up to 74.3 emu/g. This study provides a low cost, safe, and universal route to serve as excellent biocompatibility magnetic core for future applications in biomedical, agriculture, and horticulture applications

    Shape-Evolution and Growth Mechanism of Fe 3

    Get PDF

    Integrative lipidomic features identify plasma lipid signatures in chronic urticaria

    Get PDF
    Chronic urticaria (CU) is a chronic inflammatory skin disease mainly mediated by mast cells. Lipids exert essential functions in biological processes; however, the role of lipids in CU remains unclear. Nontargeted lipidomics was performed to investigate the differential lipid profiles between CU patients and healthy control (HC) subjects. Functional validation studies were performed in vitro and in vivo including β-hexosaminidase release examination from mast cells and passive cutaneous anaphylaxis (PCA) mouse model. We detected dramatically altered glycerophospholipids in CU patients compared with HCs. Phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) were increased, while phosphatidylcholine (PC) was reduced in CU patients. The reduction in PC was related to a high weekly urticaria activity score (UAS7), while PS was positively associated with the dermatology life quality index (DLQI). We also identified the differential lipid profiles between chronic spontaneous urticaria (CSU), symptomatic dermographism (SD), and CSU coexist with SD. CU patients were classified into two subtypes (subtype 1 and subtype 2) based on consensus clustering of lipid profiling. Compared with patients in subtype 2, patients in subtype 1 had elevated levels of PC (18:0e/18:2) and PE (38:2), and lower urticaria control test (UCT) scores indicated worse clinical efficiency of secondary generation H1 antihistamines treatment. Importantly, we found that supplementation with PC could attenuate IgE-induced immune responses in mast cells. In general, We described the landscape of plasma lipid alterations in CU patients and provided novel insights into the role of PC in mast cells

    Carbon footprint and embodied nutrition evaluation of 388 recipes

    Get PDF
    Food consumption, which delivers fundamental energy and essential nutrients to human beings, is crucial for achieving a series of sustainable goals. Alongside rising population growth and living standards, there has been a significant increase in food cultivation demands, supply chain complexities, and waste management. Therefore, to protect human health and the environment, promoting sustainable food systems and the uptake of sustainable dietary habits are vital. Yet, information on the environmental and health impact of dietary choices remains inconsistent across multiple evaluation methods, which fail to deliver essential ideas to consumers. In this study, we formulate an integrated approach using Environmentally Extended Input-Output analysis, covering the food supply chain from production to the distribution phase, complemented with a hybrid Life Cycle Assessment for cooking and disposal processes, to quantify the carbon footprint of specific recipes. Our dataset also includes the distinct nutritional values of each recipe. This dataset not only informs the food industry and recipe platforms, enabling more sustainable choices, but also helps individuals balance nutritional value with environmental impact, leading to more informed and sustainable dietary decisions

    Increasing single households challenges household decarbonization in japan

    Get PDF
    In light of societal shifts such as an aging population, delayed marriages, and higher rates of divorce, there's a notable rise in solitary living, affecting society, the economy, and the environment. To understand the implications of these demographic shifts, our research examines the nexus between solo living and its broader social-environmental consequences. Using Japan, one of the countries with the highest proportion of the elderly, as a reference, we explore the temporal fluctuations, gender-specific variances, and long-term trends in carbon footprints influenced by alterations in consumption behaviors. Results indicate that housing energy and food consumption remain the dominant carbon footprint contributors across all demographic sectors. Interestingly, single households present higher carbon footprints than non-single households, with those of single females surpassing their male counterparts due to increased household energy use and expenditures on clothing and healthcare. Following the demographic shifts, single households are expected to account for approximately 31.1% of Japan's emissions from households by 2040, challenging national decarbonization efforts due to their higher per capita emissions. This highlights the imperative for bespoke strategies, especially in resource allocation and sharing, to address the solo living challenge and ensure congruence with Japan's sustainability and decarbonization goals

    Histological and transcriptomic responses of two immune organs, the spleen and head kidney, in Nile tilapia (Oreochromis niloticus) to long-term hypersaline stress

    Get PDF
    © 2018 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (February 2018) in accordance with the publisher’s archiving policyHyperosmotic stress can adversely affect fish immunity, but little is known about the histological and transcriptomic responses of immune organs in fish in a hyperosmotic environment. This study evaluated the effects of long-term hypersaline conditions (16‰) on the growth, histology and transcriptomics of the two main immune organs, the spleen and head kidney, in Nile tilapia Oreochromis niloticus relative to those reared in freshwater for eight weeks. No differences in weight gain and specific growth rate were found between fish reared under these two salinities. Hyperosmotic stress induced a congestive or enlarged spleen. Platelet- and coagulation-related gene expression was significantly decreased in tilapia at 16‰. The red cell distribution width and value of the mean corpuscular hemoglobin were significantly greater in fish at 16‰ salinity than in control fish in freshwater. A large volume of melano-macrophages in the spleen and pigment deposition in both the spleen and head kidney were observed in the histological sections in fish at 16‰ salinity. Transmission electron microscopic results showed abnormal macrophages with deposition granules in the spleen and head kidney and more neutrophils in the head kidney of fish at 16‰ than in control fish. In total, 772 and 502 genes were annotated for significantly different expression in the spleen and head kidney, respectively, and corresponded to five and one significantly changed immune system pathways, respectively. The complement pathway in the spleen was significantly down-regulated at 16‰. This study indicates that long-term exposure of Nile tilapia to a hyperosmotic environment can induce splenomegaly, reduce coagulation function, enhance phagocytic activity and down-regulate the complement pathway in the spleen. The spleen is a more sensitive organ for immune responses to chronic ambient salinity stress than the head kidney in Nile tilapia
    • …
    corecore