533 research outputs found

    Research on Precipitation Prediction Model Based on Extreme Learning Machine Ensemble

    Get PDF
    Precipitation is a significant index to measure the degree of drought and flood in a region, which directly reflects the local natural changes and ecological environment. It is very important to grasp the change characteristics and law of precipitation accurately for effectively reducing disaster loss and maintaining the stable development of a social economy. In order to accurately predict precipitation, a new precipitation prediction model based on extreme learning machine ensemble (ELME) is proposed. The integrated model is based on the extreme learning machine (ELM) with different kernel functions and supporting parameters, and the submodel with the minimum root mean square error (RMSE) is found to fit the test data. Due to the complex mechanism and factors affecting precipitation change, the data have strong uncertainty and significant nonlinear variation characteristics. The mean generating function (MGF) is used to generate the continuation factor matrix, and the principal component analysis technique is employed to reduce the dimension of the continuation matrix, and the effective data features are extracted. Finally, the ELME prediction model is established by using the precipitation data of Liuzhou city from 1951 to 2021 in June, July and August, and a comparative experiment is carried out by using ELM, long-term and short-term memory neural network (LSTM) and back propagation neural network based on genetic algorithm (GA-BP). The experimental results show that the prediction accuracy of the proposed method is significantly higher than that of other models, and it has high stability and reliability, which provides a reliable method for precipitation prediction

    Nanoindentation characterization on local plastic response of Ti-6Al-4V under high-load spherical indentation

    Get PDF
    After high-load spherical indentation treatment, the variations of hardness on the plastic zone of Ti-6Al-4V were investigated via nanoindentation method. The hardness within the center of plastic zone was measured by nanoindenter, and the magnitude decreased gradually along the depth, which were caused by the different extent of plastic deformation under the residual imprint. The microstructure of indentation were observed using scanning electron microscope (SEM) before and after surface etching, and the results showed that the microhardness revealed the average hardness of α and β phases of Ti-6Al-4V. The maximum hardness reached 6.438 GPa in the depth of 132 μm. In addition, the two and three dimensional contour profiles of residual imprint introduced by high-load spherical indentation were measured by the white-light interferometer and the shape of residual imprint was obtained. All results were discussed in detail

    Multi-objective Optimization of Space-Air-Ground Integrated Network Slicing Relying on a Pair of Central and Distributed Learning Algorithms

    Full text link
    As an attractive enabling technology for next-generation wireless communications, network slicing supports diverse customized services in the global space-air-ground integrated network (SAGIN) with diverse resource constraints. In this paper, we dynamically consider three typical classes of radio access network (RAN) slices, namely high-throughput slices, low-delay slices and wide-coverage slices, under the same underlying physical SAGIN. The throughput, the service delay and the coverage area of these three classes of RAN slices are jointly optimized in a non-scalar form by considering the distinct channel features and service advantages of the terrestrial, aerial and satellite components of SAGINs. A joint central and distributed multi-agent deep deterministic policy gradient (CDMADDPG) algorithm is proposed for solving the above problem to obtain the Pareto optimal solutions. The algorithm first determines the optimal virtual unmanned aerial vehicle (vUAV) positions and the inter-slice sub-channel and power sharing by relying on a centralized unit. Then it optimizes the intra-slice sub-channel and power allocation, and the virtual base station (vBS)/vUAV/virtual low earth orbit (vLEO) satellite deployment in support of three classes of slices by three separate distributed units. Simulation results verify that the proposed method approaches the Pareto-optimal exploitation of multiple RAN slices, and outperforms the benchmarkers.Comment: 19 pages, 14 figures, journa

    Rate-delay analysis of radio access network slices

    Get PDF
    Based on wireless network virtualization, radio access network (RAN) slicing is developed to provide services for the different users' requirements. Moreover, the users' sum data rate and delay are two significant metrics to guarantee quality of services. In this paper, we first establish an optimization problem to maximize the downlink sum rate while guaranteeing users' delay for RAN slices, where the base stations and user equipments are randomly distributed. Then we analyze the performance tradeoff between the sum rate maximization and delay tolerance. With the aid of Lyapunov optimization, the upper bounds of the achievable rate and delay are derived, through which the existence of tradeoff in performance is obvious and verified by numerical results
    • …
    corecore