10 research outputs found

    Surface Modification and Planar Defects of Calcium Carbonates by Magnetic Water Treatment

    Get PDF
    Powdery calcium carbonates, predominantly calcite and aragonite, with planar defects and cation–anion mixed surfaces as deposited on low-carbon steel by magnetic water treatment (MWT) were characterized by X-ray diffraction, electron microscopy, and vibration spectroscopy. Calcite were found to form faceted nanoparticles having 3x () commensurate superstructure and with well-developed {} and {} surfaces to exhibit preferred orientations. Aragonite occurred as laths having 3x () commensurate superstructure and with well-developed () surface extending along [100] direction up to micrometers in length. The (hkil)-specific coalescence of calcite and rapid lath growth of aragonite under the combined effects of Lorentz force and a precondensation event account for a beneficial larger particulate/colony size for the removal of the carbonate scale from the steel substrate. The coexisting magnetite particles have well-developed {011} surfaces regardless of MWT

    Prokaryotic Hydrocarbon Degraders

    No full text
    Hydrocarbons have been part of the biosphere for millions of years, and a diverse group of prokaryotes has evolved to use them as a source of carbon and energy. To date, the vast majority of formally defined genera are eubacterial, in 7 of the 24 major phyla currently formally recognized by taxonomists (Tree of Life, http://tolweb.org/Eubacteria. Accessed 1 Sept 2017, 2017); principally in the Actinobacteria, the Bacteroidetes, the Firmicutes, and the Proteobacteria. Some Cyanobacteria have been shown to degrade hydrocarbons on a limited scale, but whether this is of any ecological significance remains to be seen – it is likely that all aerobic organisms show some basal metabolism of hydrocarbons by nonspecific oxygenases, and similar “universal” metabolism may occur in anaerobes. This chapter focuses on the now quite large number of named microbial genera where there is reasonably convincing evidence for hydrocarbon metabolism. We have found more than 320 genera of Eubacteria, and 12 genera of Archaea. Molecular methods are revealing a vastly greater diversity of currently uncultured organisms – Hug et al. (Nat Microbiol 1:16048, 2016) claim 92 named bacterial phyla, many with almost totally unknown physiology – and it seems reasonable to believe that the catalog of genera reported here will be substantially expanded in the future
    corecore