286 research outputs found
The mandible and its foramen: anatomy, anthropology, embryology and resulting clinical implications
The aim of this paper is to summarise the knowledge about the anatomy, embryology and anthropology of the mandible and the mandibular foramen and also to highlight the most important clinical implications of the current studies regarding anaesthesia performed in the region of the mandible. An electronic journal search was undertaken to identify all the relevant studies published in English. The search included MEDLINE and EMBASE databases and years from 1950 to 2012. The subject search used a combination of controlled vocabulary and free text based on the search strategy for MEDLINE using key words: ‘mandible’, ‘mandibular’, ‘foramen’, ‘anatomy’, ‘embryology’, ‘anthropology’, and ‘mental’. The reference lists of all the relevant studies and existing reviews were screened for additional relevant publications. Basing on relevant manuscripts, this short review about the anatomy, embryology and anthropology of the mandible and the mandibular foramen was written
The DISC1 Pathway Modulates Expression of Neurodevelopmental, Synaptogenic and Sensory Perception Genes
Genetic and biological evidence supports a role for DISC1 across a spectrum of major mental illnesses, including schizophrenia and bipolar disorder. There is evidence for genetic interplay between variants in DISC1 and in biologically interacting loci in psychiatric illness. DISC1 also associates with normal variance in behavioral and brain imaging phenotypes.Here, we analyze public domain datasets and demonstrate correlations between variants in the DISC1 pathway genes and levels of gene expression. Genetic variants of DISC1, NDE1, PDE4B and PDE4D regulate the expression of cytoskeletal, synaptogenic, neurodevelopmental and sensory perception proteins. Interestingly, these regulated genes include existing targets for drug development in depression and psychosis.Our systematic analysis provides further evidence for the relevance of the DISC1 pathway to major mental illness, identifies additional potential targets for therapeutic intervention and establishes a general strategy to mine public datasets for insights into disease pathways
Discordance in glycemic categories and regression to normality at baseline in 10,000 people in a Type 2 diabetes prevention trial
The world diabetes population quadrupled between 1980 and 2014 to 422 million and the enormous impact of Type 2 diabetes is recognised by the recent creation of national Type 2 diabetes prevention programmes. There is uncertainty about how to correctly risk stratify people for entry into prevention programmes, how combinations of multiple ‘at high risk’ glycemic categories predict outcome, and how the large recently defined ‘at risk’ population based on an elevated glycosylated haemoglobin (HbA1c) should be managed. We identified all 141,973 people at highest risk of diabetes in our population, and screened 10,000 of these with paired fasting plasma glucose and HbA1c for randomisation into a very large Type 2 diabetes prevention trial. Baseline discordance rate between highest risk categories was 45.6 %, and 21.3 - 37.0 % of highest risk glycaemic categories regressed to normality between paired baseline measurements (median 40 days apart). Accurate risk stratification using both fasting plasma glucose and HbA1c data, the use of paired baseline data, and awareness of diagnostic imprecision at diagnostic thresholds would avoid substantial overestimation of the true risk of Type 2 diabetes and the potential benefits (or otherwise) of intervention, in high risk subjects entering prevention trials and programmes
Autism as a disorder of neural information processing: directions for research and targets for therapy
The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself
Anthropometric Variables Accurately Predict Dual Energy X-Ray Absorptiometric-Derived Body Composition and Can Be Used to Screen for Diabetes
The current world-wide epidemic of obesity has stimulated interest in developing simple screening methods to identify individuals with undiagnosed diabetes mellitus type 2 (DM2) or metabolic syndrome (MS). Prior work utilizing body composition obtained by sophisticated technology has shown that the ratio of abdominal fat to total fat is a good predictor for DM2 or MS. The goals of this study were to determine how well simple anthropometric variables predict the fat mass distribution as determined by dual energy x-ray absorptometry (DXA), and whether these are useful to screen for DM2 or MS within a population. To accomplish this, the body composition of 341 females spanning a wide range of body mass indices and with a 23% prevalence of DM2 and MS was determined using DXA. Stepwise linear regression models incorporating age, weight, height, waistline, and hipline predicted DXA body composition (i.e., fat mass, trunk fat, fat free mass, and total mass) with good accuracy. Using body composition as independent variables, nominal logistic regression was then performed to estimate the probability of DM2. The results show good discrimination with the receiver operating characteristic (ROC) having an area under the curve (AUC) of 0.78. The anthropometrically-derived body composition equations derived from the full DXA study group were then applied to a group of 1153 female patients selected from a general endocrinology practice. Similar to the smaller study group, the ROC from logistical regression using body composition had an AUC of 0.81 for the detection of DM2. These results are superior to screening based on questionnaires and compare favorably with published data derived from invasive testing, e.g., hemoglobin A1c. This anthropometric approach offers promise for the development of simple, inexpensive, non-invasive screening to identify individuals with metabolic dysfunction within large populations
DNA Methylation in the Human Cerebral Cortex Is Dynamically Regulated throughout the Life Span and Involves Differentiated Neurons
The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5′ CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts—defined by chronic neurodegeneration (Alzheimer's) or lack thereof (schizophrenia)—were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK) typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase
Relationship between PPI and baseline startle response
Prepulse inhibition (PPI) of the startle response to a sudden noise is the reduction in startle observed when the noise is preceded shortly by a mild sensory event, which is often a tone. A part of the literature is based on the assumption that PPI is independent of the baseline startle. A simple model is presented and experimental validation provided. The model is based on the commonly accepted observation that the neuronal circuit of PPI differs from that of startle. But, by using a common output, the measures of both phenomena become linked to each other. But, how can we interpret the numerous experimental data showing PPI to be independent of the startle level? It is suggested that in a number of such cases the baseline startle would have been stabilized by a ceiling effect in the startle/PPI neuronal networks. Reducing the startle level, for example in a PPI evaluation procedure, may disclose properties of startle masked by this ceiling effect. Disclosure of habituation to the startle eliciting noise produced an increase of PPI along its initial measurements. Taken together, even if the neuronal process that sustains startle and PPI are distinct, separating them experimentally requires careful parametric methods and caution in the interpretation of the corresponding observations
MEKK1-MKK4-JNK-AP1 Pathway Negatively Regulates Rgs4 Expression in Colonic Smooth Muscle Cells
Background: Regulator of G-protein Signaling 4 (RGS4) plays an important role in regulating smooth muscle contraction, cardiac development, neural plasticity and psychiatric disorder. However, the underlying regulatory mechanisms remain elusive. Our recent studies have shown that upregulation of Rgs4 by interleukin (IL)-1b is mediated by the activation of NFkB signaling and modulated by extracellular signal-regulated kinases, p38 mitogen-activated protein kinase, and phosphoinositide-3 kinase. Here we investigate the effect of the c-Jun N-terminal kinase (JNK) pathway on Rgs4 expression in rabbit colonic smooth muscle cells. Methodology/Principal Findings: Cultured cells at first passage were treated with or without IL-1b (10 ng/ml) in the presence or absence of the selective JNK inhibitor (SP600125) or JNK small hairpin RNA (shRNA). The expression levels of Rgs4 mRNA and protein were determined by real-time RT-PCR and Western blot respectively. SP600125 or JNK shRNA increased Rgs4 expression in the absence or presence of IL-1b stimulation. Overexpression of MEKK1, the key upstream kinase of JNK, inhibited Rgs4 expression, which was reversed by co-expression of JNK shRNA or dominant-negative mutants for MKK4 or JNK. Both constitutive and inducible upregulation of Rgs4 expression by SP600125 was significantly inhibited by pretreatment with the transcription inhibitor, actinomycin D. Dual reporter assay showed that pretreatment with SP600125 sensitized the promoter activity of Rgs4 in response to IL-1b. Mutation of the AP1-binding site within Rgs
- …