71 research outputs found
Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells
Inorganic organic perovskites like methylammonium lead iodide have proven to be an effective class of materials for fabricating efficient solar cells. To improve their performance, light management techniques using textured surfaces, similar to those used in established solar cell technologies, should be considered. Here, we apply a light management foil created by UV nanoimprint lithography on the glass side of an inverted p i n perovskite solar cell with 16.3 efficiency. The obtained 1 mA cm 2 increase in the short circuit current density translates to a relative improvement in cell performance of 5 , which results in a power conversion efficiency of 17.1 . Optical 3D simulations based on experimentally obtained parameters were used to support the experimental findings. A good match between the simulated and experimental data was obtained, validating the model. Optical simulations reveal that the main improvement in device performance is due to a reduction in total reflection and that relative improvement in the short circuit current density of up to 10 is possible for large area devices. Therefore, our results present the potential of light management foils for improving the device performance of perovskite solar cells and pave the way for further use of optical simulations in the field of perovskite solar cell
Perovskite CIGS Tandem Solar Cells From Certified 24.2 toward 30 and Beyond
We demonstrate a monolithic perovskite CIGS tandem solar cell with a certified power conversion efficiency PCE of 24.2 . The tandem solar cell still exhibits photocurrent mismatch between the subcells; thus optical simulations are used to determine the optimal device stack. Results reveal a high optical potential with the optimized device reaching a short circuit current density of 19.9 mA cm 2 and 32 PCE based on semiempirical material properties. To evaluate its energy yield, we first determine the CIGS temperature coefficient, which is at amp; 8722;0.38 K 1 notably higher than the one from the perovskite subcell amp; 8722;0.22 K 1 , favoring perovskite in the field operation at elevated cell temperatures. Both single junction cells, however, are significantly outperformed by the combined tandem device. The enhancement in energy output is more than 50 in the case of CIGS single junction device. The results demonstrate the high potential of perovskite CIGS tandem solar cells, for which we describe optical guidelines toward 30 PC
Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia
Abstract:Altered olfactory function is a common symptom of COVID-19, but its etiology is unknown. A key question is whether SARS-CoV-2 (CoV-2) – the causal agent in COVID-19 – affects olfaction directly, by infecting olfactory sensory neurons or their targets in the olfactory bulb, or indirectly, through perturbation of supporting cells. Here we identify cell types in the olfactory epithelium and olfactory bulb that express SARS-CoV-2 cell entry molecules. Bulk sequencing demonstrated that mouse, non-human primate and human olfactory mucosa expresses two key genes involved in CoV-2 entry, ACE2 and TMPRSS2. However, single cell sequencing revealed that ACE2 is expressed in support cells, stem cells, and perivascular cells, rather than in neurons. Immunostaining confirmed these results and revealed pervasive expression of ACE2 protein in dorsally-located olfactory epithelial sustentacular cells and olfactory bulb pericytes in the mouse. These findings suggest that CoV-2 infection of non-neuronal cell types leads to anosmia and related disturbances in odor perception in COVID-19 patients
Diversity among clients of female sex workers in India: comparing risk profiles and intervention impact by site of solicitation. implications for the vulnerability of less visible female sex workers.
BACKGROUND: It seems generally accepted that targeted interventions in India have been successful in raising condom use between female sex workers (FSWs) and their clients. Data from clients of FSWs have been under-utilised to analyse the risk environments and vulnerability of both partners. METHODS: The 2009 Integrated Biological and Behavioural Assessment survey sampled clients of FSWs at hotspots in Andhra Pradesh, Maharashtra and Tamil Nadu (n=5040). The risk profile of clients in terms of sexual networking and condom use are compared across usual pick-up place. We used propensity score matching (PSM) to estimate the average treatment effect on treated (ATT) of intervention messages on clients' consistent condom use with FSW. RESULTS: Clients of the more hidden sex workers who solicit from home or via phone or agents had more extensive sexual networks, reporting casual female partners as well as anal intercourse with male partners and FSW. Clients of brothel-based sex workers, who were the least educated, reported the fewest number/categories of partners, least anal sex, and lowest condom use (41%). Consistent condom use varied widely by state: 65% in Andhra Pradesh, 36% in Maharashtra and 29% in Tamil Nadu. Exposure to intervention messages on sexually transmitted infections was lowest among men frequenting brothels (58%), and highest among men soliciting less visible sex workers (70%). Exposure had significant impact on consistent condom use, including among clients of home-based sex workers (ATT 21%; p=0.001) and among men soliciting other more hidden FSW (ATT 17%; p=0.001). In Tamil Nadu no impact could be demonstrated. CONCLUSION: Commercial sex happens between two partners and both need to be, and can be, reached by intervention messages. Commercial sex is still largely unprotected and as the sex industry gets more diffuse a greater focus on reaching clients of sex workers seems important given their extensive sexual networks
Efficacy of Structural-Level Condom Distribution Interventions: A Meta-Analysis of U.S. and International Studies, 1998–2007
This systematic review examines the overall efficacy of U.S. and international-based structural-level condom distribution interventions (SLCDIs) on HIV risk behaviors and STIs and identifies factors associated with intervention efficacy. A comprehensive literature search of studies published from January 1988 through September 2007 yielded 21 relevant studies. Significant intervention effects were found for the following outcomes: condom use, condom acquisition/condom carrying, delayed sexual initiation among youth, and reduced incident STIs. The stratified analyses for condom use indicated that interventions were efficacious for various groups (e.g., youth, adults, males, commercial sex workers, clinic populations, and populations in areas with high STI incidence). Interventions increasing the availability of or accessibility to condoms or including additional individual, small-group or community-level components along with condom distribution were shown to be efficacious in increasing condom use behaviors. This review suggests that SLCDIs provide an efficacious means of HIV/STI prevention
Selection platforms for directed evolution in synthetic biology
Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly
conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a
small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and
characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood
about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from
simple systems made from biological molecules – gaining a deeper understanding of life in the process.
Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of
engineering even the most highly conserved biological processes. It encompasses a range of methodologies
to create variation in a population and to select individual variants with the desired function – be it a ligand,
enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin
all evolution platforms and review some of the recent contributions from directed evolution to synthetic
biology, in particular methods that have been used to engineer the Central Dogma and the genetic code
Simulating False Vacuum Decays in a 2D Mesoscopic Quantum System Using Programmable Quantum Annealing
• Investigation of domain reconfiguration dynamics in an electronic charge density-wave crystal (1T-TaS2) by means of scanning tunnelling microscopy.• Observing quantum domain melting and simulating it using D-Wave‘s quantum annealer.• Demonstrating the remarkable value of quantum simulators for modeling the dynamics of emergent mesoscopic inhomogeneities on the basis of fundamental interactions.• The presented quantum simulation of a real system would not be possible with a state-of-the-art conventional computer
- …