7 research outputs found

    Evaluating the Effects of C3 Inhibition on Geographic Atrophy Progression from Deep-Learning OCT Quantification: A Split-Person Study

    Get PDF
    INTRODUCTION: To evaluate the effect pegcetacoplan, a C3 and C3b inhibitor, on the rate of progression of geographic atrophy (GA) as assessed by spectral domain optical coherence tomography (SD-OCT) using a split-person study design and deep-learning quantification. METHODS: A post hoc analysis of phase 2 FILLY trial data comparing study (treated monthly, treated every other month and sham-treated) and fellow (untreated) eyes in a split-person study design was performed. This analysis included 288 eyes from 144 patients with bilateral GA from the FILLY phase 2 trial (Clinical Trials identifier: NCT02503332). Only patients with bilateral GA and without evidence of choroidal neovascularisation in either eye were included. Patient study eyes were treated with sham injections or with pegcetacoplan monthly (PM) or every other month (PEOM) for 12 months. SD-OCT scans of study and fellow eyes taken at baseline and 12 months were used for the analysis. The main outcomes were the annual change in the area of retinal pigment epithelial and outer retinal atrophy (RORA), its constituent features (photoreceptor degeneration [PRD], retinal pigment epithelium [RPE] loss, hypertransmission) and intact macula as compared to the untreated fellow eye. RESULTS: Annual GA growth was reduced in eyes treated with PM versus untreated fellow eyes for OCT features, including RORA (study eye 0.792 vs. fellow eye 1.13 mm2; P = 0.003), PRD (0.739 vs. 1.23 mm2; P = 0.015), RPE-loss (0.789 vs. 1.17 mm2; P = 0.007) and intact macula (- 0.735 vs. - 1.29 mm2; P = 0.011). Similar (but not statistically significant) trends were observed with the PEOM treatment or when GA was quantified with fundus autofluorescence (FAF). The sham treatment demonstrated no effect. Pearson correlation coefficients showed concordance in the enlargement rate of GA between the study and fellow eyes in the sham (R = 0.64) and PEOM (R = 0.68) groups, but not in the PM group (R = 0.21). CONCLUSIONS: Pegcetacoplan-treated eyes demonstrated a reduction in spatial GA progression compared to their untreated counterparts. This effect was more evident on OCT than with FAF. TRIAL REGISTRATION: Clinical Trials identifier: NCT02503332

    Deep-learning automated quantification of longitudinal OCT scans demonstrates reduced RPE loss rate, preservation of intact macular area and predictive value of isolated photoreceptor degeneration in geographic atrophy patients receiving C3 inhibition treatment

    Get PDF
    OBJECTIVE: To evaluate the role of automated optical coherence tomography (OCT) segmentation, using a validated deep-learning model, for assessing the effect of C3 inhibition on the area of geographic atrophy (GA); the constituent features of GA on OCT (photoreceptor degeneration (PRD), retinal pigment epithelium (RPE) loss and hypertransmission); and the area of unaffected healthy macula.To identify OCT predictive biomarkers for GA growth. METHODS: Post hoc analysis of the FILLY trial using a deep-learning model for spectral domain OCT (SD-OCT) autosegmentation. 246 patients were randomised 1:1:1 into pegcetacoplan monthly (PM), pegcetacoplan every other month (PEOM) and sham treatment (pooled) for 12 months of treatment and 6 months of therapy-free monitoring. Only participants with Heidelberg SD-OCT were included (n=197, single eye per participant).The primary efficacy endpoint was the square root transformed change in area of GA as complete RPE and outer retinal atrophy (cRORA) in each treatment arm at 12 months, with secondary endpoints including RPE loss, hypertransmission, PRD and intact macular area. RESULTS: Eyes treated PM showed significantly slower mean change of cRORA progression at 12 and 18 months (0.151 and 0.277 mm, p=0.0039; 0.251 and 0.396 mm, p=0.039, respectively) and RPE loss (0.147 and 0.287 mm, p=0.0008; 0.242 and 0.410 mm, p=0.00809). PEOM showed significantly slower mean change of RPE loss compared with sham at 12 months (p=0.0313). Intact macular areas were preserved in PM compared with sham at 12 and 18 months (p=0.0095 and p=0.044). PRD in isolation and intact macula areas was predictive of reduced cRORA growth at 12 months (coefficient 0.0195, p=0.01 and 0.00752, p=0.02, respectively) CONCLUSION: The OCT evidence suggests that pegcetacoplan slows progression of cRORA overall and RPE loss specifically while protecting the remaining photoreceptors and slowing the progression of healthy retina to iRORA

    Evaluating the Effects of C3 Inhibition on Geographic Atrophy Progression from Deep-Learning OCT Quantification:A Split-Person Study

    Get PDF
    Introduction: To evaluate the effect pegcetacoplan, a C3 and C3b inhibitor, on the rate of progression of geographic atrophy (GA) as assessed by spectral domain optical coherence tomography (SD-OCT) using a split-person study design and deep-learning quantification. Methods: A post hoc analysis of phase 2 FILLY trial data comparing study (treated monthly, treated every other month and sham-treated) and fellow (untreated) eyes in a split-person study design was performed. This analysis included 288 eyes from 144 patients with bilateral GA from the FILLY phase 2 trial (Clinical Trials identifier: NCT02503332). Only patients with bilateral GA and without evidence of choroidal neovascularisation in either eye were included. Patient study eyes were treated with sham injections or with pegcetacoplan monthly (PM) or every other month (PEOM) for 12 months. SD-OCT scans of study and fellow eyes taken at baseline and 12 months were used for the analysis. The main outcomes were the annual change in the area of retinal pigment epithelial and outer retinal atrophy (RORA), its constituent features (photoreceptor degeneration [PRD], retinal pigment epithelium [RPE] loss, hypertransmission) and intact macula as compared to the untreated fellow eye. Results: Annual GA growth was reduced in eyes treated with PM versus untreated fellow eyes for OCT features, including RORA (study eye 0.792 vs. fellow eye 1.13 mm2; P = 0.003), PRD (0.739 vs. 1.23 mm2; P = 0.015), RPE-loss (0.789 vs. 1.17 mm2; P = 0.007) and intact macula (− 0.735 vs. − 1.29 mm2; P = 0.011). Similar (but not statistically significant) trends were observed with the PEOM treatment or when GA was quantified with fundus autofluorescence (FAF). The sham treatment demonstrated no effect. Pearson correlation coefficients showed concordance in the enlargement rate of GA between the study and fellow eyes in the sham (R = 0.64) and PEOM (R = 0.68) groups, but not in the PM group (R = 0.21). Conclusions: Pegcetacoplan-treated eyes demonstrated a reduction in spatial GA progression compared to their untreated counterparts. This effect was more evident on OCT than with FAF. Trial Registration: Clinical Trials identifier: NCT02503332.</p

    SPATIAL PATTERNS OF MULTIDRUG-RESISTANT TUBERCULOSIS DISTRIBUTION IN CAPE TOWN AND PORT ELIZABETH, SOUTH AFRICA

    No full text
    Objectives: To carry out a spatial clustering analysis of multidrug-resistant tuberculosis incidence (MDR TB) in South Africa on the global and regional levels and to use multiple linear regression to find socioeconomic predictors of the distribution using data from the Cape Town and Nelson Mandela Bay (Port Elizabeth) local municipalities. Methods: National Health Laboratory Service data between 2009 and 2011 were used along with South African Census 2011 data to find spatial distribution of MDR TB incidence. The Getis-Ord Gi* statistic tool of ArcGIS® 10.2 was used to compute the location of significant hot and cold spots on the level of South Africa, Cape Town and Port Elizabeth (Nelson Mandela Bay municipality). Lastly, the regional datasets were examined by the means of a non-spatial multiple linear regression in STATA 13. Results: MDR TB incidence data points were significantly clustered on thenational as well as regional levels. The Getis-Ord Gi*statistic yielded significantresults, showing the hot and cold spots of the disease on the level of South Africaas well as the Cape Town (CT) and Nelson Mandela Bay (NMB) loca lmunicipalities. A multiple linear regressions selection revealed that in the CT municipality the MDR TB incidence variable was significantly negatively correlated with education (p=0.002) and positively with income (p=0.015) and TB incidence (p<0.001). Port Elizabeth MDR TB incidence showed a significant positive relationship with TB incidence (p<0.001). Conclusions: The distribution of multidrug-resistant tuberculosis is significantly non-random on at least two levels of resolution, the national and the municipal. In general, the spatial distribution of MDR TB and socioeconomic variables suggests higher incidence in economically disadvantaged areas, which was confirmed by analysis of data from CT and NMB. Nevertheless, further research is required to understand the socioeconomic predictors of the disease and to find additional variables that may be associated with the spatial distribution of MDR TB both locally and globally

    Visual and Anatomical Outcomes of a Single Intravitreal Dexamethasone in Diabetic Macular Edema: An 8 Year Real-World Study

    No full text
    Importance: Diabetic macular edema (DME) is a major cause of vision loss in patients with diabetes mellitus. Intravitreal dexamethasone is a treatment option for patients unsuitable for or non-responsive to anti-angiogenic agents. Objective: To quantify visual and anatomical outcomes from an initial intravitreal dexamethasone injection over the expected 6-month period of dexamethasone release by the implant. Design and enrolment: This is a retrospective cohort study using electronic medical records of patients reviewed between 1 January 2012 and 1 April 2022. Setting: A tertiary eye-care center in London, United Kingdom; Moorfields Eye Hospital National Healthcare System Foundation Trust. Participants: The cohort comprised 418 adult patients with DME who received an initial treatment of 700 µg intravitreal dexamethasone in the study period. Of these, 240 patients met the inclusion criteria of ≥2 hospital visits following initial injection (≥1 beyond 6 months) and no previous ocular corticosteroid treatment or missing assessment at baseline. Exposure(s): Intravitreal dexamethasone implant (700 µg). Main Outcome(s) and Measure(s): Probability of a positive visual outcome, defined as ≥5 or ≥10 Early Treatment Diabetic Retinopathy Study (ETDRS)-letter gain after treatment when compared to baseline (Kaplan–Meier models). Results: From the initial intravitreal dexamethasone injection alone, we observed a >75% chance of gaining ≥5 ETDRS letters and >50% chance of gaining ≥10 ETDRS letters within 6 months. There was less than a 50% chance of sustaining either positive visual outcome beyond 4 months. Conclusions and Relevance: Most patients can be expected to have a positive visual outcome following an initial injection of dexamethasone implants that subsides within 4 months. Real-world re-treatment was observed to be delayed until after visual benefits were lost in half of the cohort. Further research will be needed to study the effects of delays in re-treatment

    Deep-learning automated quantification of longitudinal OCT scans demonstrates reduced RPE loss rate, preservation of intact macular area and predictive value of isolated photoreceptor degeneration in geographic atrophy patients receiving C3 inhibition treatment

    Get PDF
    Objective: To evaluate the role of automated optical coherence tomography (OCT) segmentation, using a validated deep-learning model, for assessing the effect of C3 inhibition on the area of geographic atrophy (GA); the constituent features of GA on OCT (photoreceptor degeneration (PRD), retinal pigment epithelium (RPE) loss and hypertransmission); and the area of unaffected healthy macula. To identify OCT predictive biomarkers for GA growth. Methods: Post hoc analysis of the FILLY trial using a deep-learning model for spectral domain OCT (SD-OCT) autosegmentation. 246 patients were randomised 1:1:1 into pegcetacoplan monthly (PM), pegcetacoplan every other month (PEOM) and sham treatment (pooled) for 12 months of treatment and 6 months of therapy-free monitoring. Only participants with Heidelberg SD-OCT were included (n=197, single eye per participant). The primary efficacy endpoint was the square root transformed change in area of GA as complete RPE and outer retinal atrophy (cRORA) in each treatment arm at 12 months, with secondary endpoints including RPE loss, hypertransmission, PRD and intact macular area. Results: Eyes treated PM showed significantly slower mean change of cRORA progression at 12 and 18 months (0.151 and 0.277 mm, p=0.0039; 0.251 and 0.396 mm, p=0.039, respectively) and RPE loss (0.147 and 0.287 mm, p=0.0008; 0.242 and 0.410 mm, p=0.00809). PEOM showed significantly slower mean change of RPE loss compared with sham at 12 months (p=0.0313). Intact macular areas were preserved in PM compared with sham at 12 and 18 months (p=0.0095 and p=0.044). PRD in isolation and intact macula areas was predictive of reduced cRORA growth at 12 months (coefficient 0.0195, p=0.01 and 0.00752, p=0.02, respectively) Conclusion: The OCT evidence suggests that pegcetacoplan slows progression of cRORA overall and RPE loss specifically while protecting the remaining photoreceptors and slowing the progression of healthy retina to iRORA
    corecore