194 research outputs found
Puzzles in Cabibbo-Suppressed Charm Decays
We identify two Cabibbo suppressed decay modes with anomalously high
branching ratios which are not simply explained by any model. All standard
model diagrams that can contribute to these decays are related by symmetries to
diagrams for other decays that do not show any such enhancement. If these high
branching ratios are confirmed by more precise experiments, they may require
new physics to explain them. Anomalies in decays and tests for possible
violation of G-parity are discussed.Comment: 12 pages, additional clarification at eq. (13), correction of error
in eq. (18) and subsequent discussio
Isoscalar-isovector mass splittings in excited mesons
Mass splittings between the isovector and isoscalar members of meson nonets
arise in part from hadronic loop diagrams which violate the Okubo-Zweig-Iizuka
rule.
Using a model for these loop processes which works qualitatively well in the
established nonets, I tabulate predictions for the splittings and associated
isoscalar mixing angles in the remaining nonets below about 2.5 GeV, and
explain some of their systematic features.
The results for excited vector mesons compare favorably with experiment.Comment: 8 RevTeX pages, including 1 LaTeX figure.
CMU-HEP93-23/DOE-ER-40682-4
Generator Coordinate Truncations
We investigate the accuracy of several schemes to calculate ground-state
correlation energies using the generator coordinate technique. Our test-bed for
the study is the interacting boson model, equivalent to a 6-level
Lipkin-type model. We find that the simplified projection of a triaxial
generator coordinate state using the subgroup of the rotation group is
not very accurate in the parameter space of the Hamiltonian of interest. On the
other hand, a full rotational projection of an axial generator coordinate state
gives remarkable accuracy. We also discuss the validity of the simplified
treatment using the extended Gaussian overlap approximation (top-GOA), and show
that it works reasonably well when the number of boson is four or larger.Comment: 19 pages, 6 eps figure
Projection and ground state correlations made simple
We develop and test efficient approximations to estimate ground state
correlations associated with low- and zero-energy modes. The scheme is an
extension of the generator-coordinate-method (GCM) within Gaussian overlap
approximation (GOA). We show that GOA fails in non-Cartesian topologies and
present a topologically correct generalization of GOA (topGOA). An RPA-like
correction is derived as the small amplitude limit of topGOA, called topRPA.
Using exactly solvable models, the topGOA and topRPA schemes are compared with
conventional approaches (GCM-GOA, RPA, Lipkin-Nogami projection) for
rotational-vibrational motion and for particle number projection. The results
shows that the new schemes perform very well in all regimes of coupling.Comment: RevTex, 12 pages, 7 eps figure
Final-State Phases in Doubly-Cabibbo-Suppressed Charmed Meson Nonleptonic Decays
Cabibbo-favored nonleptonic charmed particle decays exhibit large final-state
phase differences in and but not
channels. It is of interest to know the corresponding pattern of final-state
phases in doubly-Cabibbo-suppressed decays, governed by the
subprocess. An experimental program is outlined for determining such phases via
measurements of rates for and channels,
and determination of interference between bands in Dalitz plots. Such a program
is feasible at planned high-intensity sources of charmed particles.Comment: 12 pages, LaTeX, 2 figures, to be submitted to Phys. Rev. D. Revised
versio
Flavor Oscillations from a Spatially Localized Source: A Simple General Treatment
A unique description avoiding confusion is presented for all flavor
oscillation experiments in which particles of a definite flavor are emitted
from a localized source. The probability for finding a particle with the wrong
flavor must vanish at the position of the source for all times. This condition
requires flavor-time and flavor-energy factorizations which determine uniquely
the flavor mixture observed at a detector in the oscillation region; i.e. where
the overlaps between the wave packets for different mass eigenstates are almost
complete. Oscillation periods calculated for ``gedanken'' time-measurement
experiments are shown to give the correct measured oscillation wave length in
space when multiplied by the group velocity. Examples of neutrinos propagation
in a weak field and in a gravitational field are given. In these cases the
relative phase is modified differently for measurements in space and time.
Energy-momentum (frequency-wave number) and space-time descriptions are
complementary, equally valid and give the same results. The two identical phase
shifts obtained describe the same physics; adding them together to get a factor
of two is double counting.Comment: 20 pages, revtex, no figure
Low-Mass Baryon-Antibaryon Enhancements in B Decays
The nature of low-mass baryon-antibaryon enhancements seen in B decays is
explored. Three possibilities include (i) states near threshold as found in a
model by Nambu and Jona-Lasinio, (ii) isoscalar states with coupled to a pair of gluons, and (iii) low-mass enhancements favored by the
fragmentation process. Ways of distinguishing these mechanisms using angular
distributions and flavor symmetry are proposed.Comment: 8 pages, LaTeX, no figures, to be submitted to Phys. Rev. D. One
reference adde
Properties of the Strange Axial Mesons in the Relativized Quark Model
We studied properties of the strange axial mesons in the relativized quark
model. We calculated the decay constant in the quark model and showed how
it can be used to extract the mixing angle
() from the weak decay . The ratio is the most sensitive
measurement and also the most reliable since the largest of the theoretical
uncertainties factor out. However the current bounds extracted from the
TPC/Two-Gamma collaboration measurements are rather weak: we typically obtain
at 68\% C.L. We also calculated the
strong OZI-allowed decays in the pseudoscalar emission model and the flux-tube
breaking model and extracted a mixing angle of . Our analysis also indicates that the heavy quark limit does not give a
good description of the strange mesons.Comment: Revised version to be published in Phys. Rev. D. Minor changes. Latex
file uses revtex version 3 and epsfig, 4 postcript figures are attached. The
full postcript version with embedded figures is available at
ftp://ftp.physics.carleton.ca/pub/theory/godfrey/ocipc9512.ps.
Inconsistency of QED in the Presence of Dirac Monopoles
A precise formulation of local gauge invariance in QED is presented,
which clearly shows that the gauge coupling associated with the unphysical
longitudinal photon field is non-observable and actually has an arbitrary
value. We then re-examine the Dirac quantization condition and find that its
derivation involves solely the unphysical longitudinal coupling. Hence an
inconsistency inevitably arises in the presence of Dirac monopoles and this can
be considered as a theoretical evidence against their existence. An
alternative, independent proof of this conclusion is also presented.Comment: Extended and combined version, refinements added; 20 LaTex pages,
Published in Z. Phys. C65, pp.175-18
Expected Polarization of particles produced in deep inelastic polarized lepton scattering
We calculate the polarization of Lambda and Anti-Lambda particles produced in
deep inelastic polarized lepton scattering. We use two models: the naive quark
model and a model in which SU(3) symmetry is used to deduce the spin
structure of SU(3) octet hyperons from that of the proton. We perform the
calculations for Lambda and Anti-Lambda produced directly or as decay products
of and .Comment: 12 pages, 1 figur
- âŠ