4,444 research outputs found

    New Measurements of Upsilon(1S) Decays to Charmonium Final States

    Full text link
    Using substantially larger data samples collected by the CLEO III detector, we report on new measurements of the decays of Upsilon(1S) to charmonium final states, including J/Psi, psi(2S), and chi_cJ. The latter two are first observations of these decays. We measure the branching fractions as follows: B(Y(1S)--> J/Psi+X)=(6.4+-0.4+-0.6)x10^-4, B(Y(1S)--> psi(2S)+X)/B(Y(1S)--> J/Psi+X)=0.41+-0.11+-0.08, B(Y(1S)--> chi_c1+X)/B(Y(1S)--> J/Psi+X)=0.35+-0.08+-0.06, B(Y(1S)--> chi_c2+X)/B(Y(1S)--> J/Psi+X)=0.52+-0.12+-0.09, and B(Y(1S)--> chi_c0+X)/B(Y(1S)--> J/Psi+X)<7.4% at 90% confidence level. We also report on the momentum and angular spectra of J/Psi's in Upsilon(1S) decay. The results are compared to predictions of the color octet and color singlet models.Comment: 27 pages postscript,also available through http://w4.lns.cornell.edu/public/CLNS/, submitted to PR

    Observation of the Hadronic Transitions Chi_{b 1,2}(2P) -> omega Upsilon(1S)

    Full text link
    The CLEO Collaboration has observed the first hadronic transition among bottomonium (b bbar) states other than the dipion transitions among vector states, Upsilon(nS) -> pi pi Upsilon(mS). In our study of Upsilon(3S) decays, we find a significant signal for Upsilon(3S) -> gamma omega Upsilon(1S) that is consistent with radiative decays Upsilon(3S) -> gamma chi_{b 1,2}(2P), followed by chi_{b 1,2} -> omega Upsilon(1S). The branching ratios we obtain are Br(chi_{b1} -> omega Upsilon(1S) = 1.63 (+0.35 -0.31) (+0.16 -0.15) % and Br(chi_{b2} -> omega Upsilon(1S) = 1.10 (+0.32 -0.28) (+0.11 - 0.10)%, in which the first error is statistical and the second is systematic.Comment: submitted to XXI Intern'l Symp on Lepton and Photon Interact'ns at High Energies, August 2003, Fermila

    First Observation of barB0 to D*0 pi+pi+pi-pi- Decays

    Full text link
    We report on the observation of B0bar -> D*0 pi+ pi+ pi- pi- decays. The branching ratio is (0.30 +/- 0.07 +/- 0.06)%. Interest in this particular mode was sparked by Ligeti, Luke and Wise who propose it as a way to check the validity of factorization tests in B0bar -> D*+ pi+ pi- pi- pi0 decays.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, Version to appear in Phys. Rev.

    A Search for Charmless BVVB\to VV Decays

    Full text link
    We have studied two-body charmless decays of the BB meson into the final states ρ0ρ0\rho^0 \rho^0, K0ρ0K^{*0} \rho^0, K0K0K^{*0} K^{*0}, K0K0ˉK^{*0} \bar{K^{*0}}, K+ρ0K^{*+} \rho^0, K+K0ˉK^{*+} \bar{K^{*0}}, and K+KK^{*+} K^{*-} using only decay modes with charged daughter particles. Using 9.7 million BBˉB \bar{B} pairs collected with the CLEO detector, we place 90% confidence level upper limits on the branching fractions, (0.467.0)×105(0.46-7.0)\times 10^{-5}, depending on final state and polarization.Comment: 8 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Observation of a Narrow Resonance of Mass 2.46 GeV/c^2 Decaying to D_s^*+ pi^0 and Confirmation of the D_sJ^* (2317) State

    Full text link
    Using 13.5 inverse fb of e+e- annihilation data collected with the CLEO II detector we have observed a narrow resonance in the Ds*+pi0 final state, with a mass near 2.46 GeV. The search for such a state was motivated by the recent discovery by the BaBar Collaboration of a narrow state at 2.32 GeV, the DsJ*(2317)+ that decays to Ds+pi0. Reconstructing the Ds+pi0 and Ds*+pi0 final states in CLEO data, we observe peaks in both of the corresponding reconstructed mass difference distributions, dM(Dspi0)=M(Dspi0)-M(Ds) and dM(Ds*pi0)=M(Ds*pi0)-M(Ds*), both of them at values near 350 MeV. We interpret these peaks as signatures of two distinct states, the DsJ*(2317)+ plus a new state, designated as the DsJ(2463)+. Because of the similar dM values, each of these states represents a source of background for the other if photons are lost, ignored or added. A quantitative accounting of these reflections confirms that both states exist. We have measured the mean mass differences = 350.0 +/- 1.2 [stat] +/- 1.0 [syst] MeV for the DsJ*(2317) state, and = 351.2 +/- 1.7 [stat] +/- 1.0 [syst] MeV for the new DsJ(2463)+ state. We have also searched, but find no evidence, for decays of the two states via the channels Ds*+gamma, Ds+gamma, and Ds+pi+pi-. The observations of the two states at 2.32 and 2.46 GeV, in the Ds+pi0 and Ds*+pi0 decay channels respectively, are consistent with their interpretations as (c anti-strange) mesons with orbital angular momentum L=1, and spin-parities of 0+ and 1+.Comment: 16 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, version to be published in Physical Review D; minor modifications and fixes to typographical errors, plus an added section on production properties. The main results are unchanged; they supersede those reported in hep-ex/030501

    Branching Fractions of tau Leptons to Three Charged Hadrons

    Full text link
    From electron-positron collision data collected with the CLEO detector operating at CESR near \sqrt{s}=10.6 GeV, improved measurements of the branching fractions for tau decays into three explicitly identified hadrons and a neutrino are presented as {\cal B}(\tau^-\to\pi^-\pi^+\pi^-\nu_\tau)=(9.13\pm0.05\pm0.46)%, {\cal B}(\tau^-\to K^-\pi^+\pi^-\nu_\tau)=(3.84\pm0.14\pm0.38)\times10^{-3}, {\cal B}(\tau^-\to K^-K^+\pi^-\nu_\tau)=(1.55\pm0.06\pm0.09)\times10^{-3}, and {\cal B}(\tau^-\to K^-K^+K^-\nu_\tau)<3.7\times10^{-5} at 90% C.L., where the uncertainties are statistical and systematic, respectively.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, to appear in Phys. Rev. Let

    Search for a Scalar Bottom Quark with Mass 3.5-4.5 GeV/c2c^{2}

    Full text link
    We report on a search for a supersymmetric B~\tilde{B} meson with mass between 3.5 and 4.5 GeV/c2c^2 using 4.52 fb1{\rm fb}^{-1} of integrated luminosity produced at s=10.52\sqrt{s}=10.52 GeV, just below the e+eBBˉe^+e^-\to B\bar{B} threshold, and collected with the CLEO detector. We find no evidence for a light scalar bottom quark.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Improved Measurement of the Form Factors in the Decay Lambda_c^+ --> Lambda e^+ nu_e

    Full text link
    Using the CLEO detector at the Cornell Electron Storage Ring, we have studied the distribution of kinematic variables in the decay Lambda_c^+ -> Lambda e^+ nu_e. By performing a four-dimensional maximum likelihood fit, we determine the form factor ratio, R = f_2/f_1 = -0.31 +/- 0.05(stat) +/- 0.04(syst), the pole mass, M_{pole} = (2.21 +/- 0.08(stat) +/- 0.14(syst)) GeV/c^2, and the decay asymmetry parameter of the Lambda_c, alpha_{Lambda_c} = -0.86 +/- 0.03(stat) +/- 0.02(syst), for = 0.67 (GeV/c^2)^2. We compare the angular distributions of the Lambda_c^+ and Lambda_c^- and find no evidence for CP-violation: A_{Lambda_c} = (alpha_{Lambda_c^+} + alpha_{Lambda_c^-})/ (alpha_{Lambda_c^+} - alpha_{Lambda_c^-}) = 0.00 +/- 0.03(stat) +/- 0.01(syst) +/- 0.02, where the third error is from the uncertainty in the world average of the CP-violating parameter, A_{Lambda}, for Lambda -> p pi^-.Comment: 8 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2004/, submitted to PR

    Measurement of the B-Meson Inclusive Semileptonic Branching Fraction and Electron-Energy Moments

    Get PDF
    We report a new measurement of the B-meson semileptonic decay momentum spectrum that has been made with a sample of 9.4/fb of electron-positron annihilation data collected with the CLEO II detector at the Y(4S) resonance. Electrons from primary semileptonic decays and secondary charm decays were separated by using charge and angular correlations in Y(4S) events with a high-momentum lepton and an additional electron. We determined the semileptonic branching fraction to be (10.91 +- 0.09 +- 0.24)% from the normalization of the electron-energy spectrum. We also measured the moments of the electron energy spectrum with minimum energies from 0.6 GeV to 1.5 GeV.Comment: 36 pages postscript, als available through http://w4.lns.cornell.edu/public/CLNS/, Submitted to PRD (back-to-back with preceding preprint hep-ex/0403052
    corecore