40 research outputs found

    New insight into the phylogeographic pattern of Liriodendron chinense (Magnoliaceae) revealed by chloroplast DNA: east–west lineage split and genetic mixture within western subtropical China

    Get PDF
    Background Subtropical China is a global center of biodiversity and one of the most important refugia worldwide. Mountains play an important role in conserving the genetic resources of species. Liriodendron chinense is a Tertiary relict tree largely endemic to subtropical China. In this study, we aimed to achieve a better understanding of the phylogeographical pattern of L. chinense and to explore the role of mountains in the conservation of L. chinense genetic resources. Methods Three chloroplast regions (psbJ-petA, rpl32-ndhF, and trnK5’-matK) were sequenced in 40 populations of L. chinense for phylogeographical analyses. Relationships among chloroplast DNA (cpDNA) haplotypes were determined using median-joining networks, and genetic structure was examined by spatial analysis of molecular variance (SAMOVA). The ancestral area of the species was reconstructed using the Bayesian binary Markov Chain Monte Carlo (BBM) method according to its geographic distribution and a maximum parsimony (MP) tree based on Bayesian methods. Results Obvious phylogeographic structure was found in L. chinense. SAMOVA revealed seven groups matching the major landscape features of the L. chinense distribution area. The haplotype network showed three clades distributed in the eastern, southwestern, and northwestern regions. Separate northern and southern refugia were found in the Wu Mountains and Yungui Plateau, with genetic admixture in the Dalou Mountains and Wuling Mountains. BBM revealed a more ancient origin of L. chinense in the eastern region, with a west–east split most likely having occurred during the Mindel glacial stage. Discussion The clear geographical distributions of haplotypes suggested multiple mountainous refugia of L. chinense. The east–west lineage split was most likely a process of gradual genetic isolation and allopatric lineage divergence when the Nanling corridor was frequently occupied by evergreen or coniferous forest during Late Quaternary oscillations. Hotspots of haplotype diversity in the Dalou Mountains and Wuling Mountains likely benefited from gene flow from the Wu Mountains and Yungui Plateau. Collectively, these results indicate that mountain regions should be the main units for conserving and collecting genetic resources of L. chinense and other similar species in subtropical China

    Identification of QTL underlying physiological and morphological traits of flag leaf in barley

    Get PDF
    Publisher's Version/PDFBackground: Physiological and morphological traits of flag leaf play important roles in determining crop grain yield and biomass. In order to understand genetic basis controlling physiological and morphological traits of flag leaf, a double haploid (DH) population derived from the cross of Huaai 11 × Huadamai 6 was used to detect quantitative trait locus (QTL) underlying 7 physiological and 3 morphological traits at the pre-filling stage in year 2012 and 2013. Results: Total of 38 QTLs distributed on chromosome 1H, 2H, 3H, 4H, 6H and 7H were detected, and explained 6.53% - 31.29% phenotypic variation. The QTLs flanked by marker Bmag829 and GBM1218 on chromosome 2H were associated with net photosynthetic rate (Pn), stomatal conductance (Gs), flag leaf area (LA), flag leaf length (FLL), flag leaf width (FLW), relative chlorophyll content (SPD) and leaf nitrogen concentration (LNC). Conclusion: Two QTL cluster regions associated with physiological and morphological traits, one each on the chromosome 2H and 7H, were observed. The two markers (Bmag829 and GBM1218) may be useful for marker assisted selection (MAS) in barley breeding.This project was supported in part by the National Natural Science Foundation of China (31301310 and 31228017) and the earmarked fund for China Agriculture Research System (CARS-5)

    Long Noncoding RNA EGFR-AS1 Promotes Cell Proliferation by Increasing EGFR mRNA Stability in Gastric Cancer

    Get PDF
    Background/Aims: LncRNA EGFR-AS1 is an antisense transcript of EGFR, which plays a key role in gastric cancer progression. This study was aimed to explore the effects of lncRNA EGFR-AS1 on GC and the underling mechanisms. Methods: The silencing of EGFR-AS1 expression was performed by using EGFR-AS1 shRNA lentivirus in MGC803 and SGC-7901 GC cell. The levels of lncRNA EGFR-AS1 and EGFR were detected by qPCR and western blot. Cell proliferation was assessed by CCK-8, EdU, and colony formation assays. The EGFR mRNA stability was explored by using RNA synthesis inhibitor Îą-amanitin. Results: In our study, EGFR-AS1 significantly up-regulated in GC tissues and correlated with tumor size. And the expression of EGFR-AS1 positively correlated with EGFR in tissues. Moreover, knock-down of EGFR-AS1 inhibited the proliferation of GC cells via suppressing EGFR-dependent PI3K/AKT pathway in vitro and in vivo. Mechanismly, depletion of EGFR-AS1 was found to decrease EGFR expression by reduction of EGFR mRNA stability. Conclusion: Our findings suggested that EGFR-AS1 might have an oncogenic effect on GC and serve as a potential target of GC

    Multi-Locus Genome-Wide Association Studies for 14 Main Agronomic Traits in Barley

    Get PDF
    The agronomic traits, including morphological and yield component traits, are important in barley breeding programs. In order to reveal the genetic foundation of agronomic traits of interest, in this study 122 doubled haploid lines from a cross between cultivars “Huaai 11” (six-rowed and dwarf) and “Huadamai 6” (two-rowed) were genotyped by 9680 SNPs and phenotyped 14 agronomic traits in 3 years, and the two datasets were used to conduct multi-locus genome-wide association studies. As a result, 913 quantitative trait nucleotides (QTNs) were identified by five multi-locus GWAS methods to be associated with the above 14 traits and their best linear unbiased predictions. Among these QTNs and their adjacent genes, 39 QTNs (or QTN clusters) were repeatedly detected in various environments and methods, and 10 candidate genes were identified from gene annotation. Nineteen QTNs and two genes (sdw1/denso and Vrs1) were previously reported, and eight candidate genes need to be further validated. The Vrs1 gene, controlling the number of rows in the spike, was found to be associated with spikelet number of main spike, spikelet number per plant, grain number per plant, grain number per spike, and 1,000 grain weight in multiple environments and by multi-locus GWAS methods. Therefore, the above results evidenced the feasibility and reliability of genome-wide association studies in doubled haploid population, and the QTNs and their candidate genes detected in this study are useful for marker-assisted selection breeding, gene cloning, and functional identification in barley

    Edge effects on epiphytes in montane moist evergreen broad-leaved forest

    No full text

    The complete chloroplast genome sequence of Actinidia styracifolia C. F. Liang

    No full text
    The complete chloroplast (cp) genome sequence of Actinidia styracifolia C. F. Liang was assembled using Illumina pair-end sequencing data in this study. The assembled plastome was 156,845 bp in length, including a large single copy (LSC) region of 88,624 bp and a small single copy (SSC) region of 20,535bp, which were separated by two inverted repeat (IR) regions of 23,843 bp. The plastome contains 113 different genes, consisting of 79 unique protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis based on chloroplast genomes revealed that A. styracifolia has a close genetic relationship with A. eriantha

    Effect of sildenafil on NLRP3/caspase-1 pathway in the aorta vascular tissue of rat models with erectile dysfunction

    No full text
    Objective To investigate the effect of sildenafil (Sil) on the expression of NLRP3/caspase-1 pathway in the aorta vascular tissue of erectile dysfunction (ED) rat models. Methods ED rat model was established and randomly divided into ED group and Sil group. Another 10 rats were selected as control group. After intragastric administration of Sil(20 mg /kg, once a day for 2 weeks), HE staining was used to observe the morphological change of aorta. Aortic fibrosis was detected by Masson staining. The content and distribution of interleukin-1β (IL-1β) and endothelial nitric oxide synthase (eNOS) in aorta were determined by immunohistochemistry. RT-qPCR and Western blot were used to detect the expression of NLRP3, caspase-1, GSDMD, IL-1β and eNOS in the aorta. Results In ED group, there were pathological changes in aortic morphology, more local exfoliation of endothelial cells and obvious fibrosis. The mRNA and protein expressions of NLRP3, caspase-1, GSDMD and IL-1β were increased, and the mRNA and protein expressions of eNOS were decreased in the aorta of the rats in the experimental group(P<0.05). Compared with the ED group, the aortic morphological changes of the Sil group were improved, the local endothelial cell shedding was reduced, and the fibrosis was alleviated. The mRNA and protein expression of NLRP3, caspase-1, GSDMD and IL-1β decreased, while the mRNA and protein expression of eNOS increased in aorta(P<0.05). Conclusions The expression of NLRP3/caspase-1 pathway protems in the aorta vescular tissue of rats with ED is up-regulated by Sil, which may improve the inflammatory response, vascular fibrosis and endothelial dysfunction by inhibiting the NLRP3/caspase-1 pathway in the aorta vascular tissue of rats with ED

    RAD-Seq Data Point to a Distinct Split in Liriodendron (Magnoliaceae) and Obvious East–West Genetic Divergence in L. chinense

    No full text
    Liriodendron is a Tertiary period relic tree genus with a typical East Asian and North American disjunction distribution pattern. As an angiosperm base group of trees, Liriodendron provides a valuable resource for the study of evolution processes. Here, we reconstruct the phylogeny and population genetic structure of Liriodendron based on the restriction site-associated DNA sequencing (RAD-Seq) of a wide collection of individuals from 16 populations. Our results reveal a clear phylogenetic break between L. chinense and L. tulipifera and obvious genetic divergence between the eastern and western populations of L. chinense, which are consistent with the patterns of geographical distributions. The phylogeographic history and long-term geographical isolation of the genus may be responsible for this pattern. Furthermore, a closer relationship was found between L. tulipifera and the eastern populations of L. chinense, indicating the ancient phylogeny of L. chinense in this area. The results of this study will aid in the development of scientific strategies for the conservation and utilization of the Liriodendron germplasm

    Analysis of Rac/Rop Small GTPase Family Expression in Santalum album L. and Their Potential Roles in Drought Stress and Hormone Treatments

    No full text
    Plant-specific Rac/Rop small GTPases, also known as Rop, belong to the Rho subfamily. Rac proteins can be divided into two types according to their C-terminal motifs: Type I Rac proteins have a typical CaaL motif at the C-terminal, whereas type II Rac proteins lack this motif but retain a cysteine-containing element for membrane anchoring. The Rac gene family participates in diverse signal transduction events, cytoskeleton morphogenesis, reactive oxygen species (ROS) production and hormone responses in plants as molecular switches. S. album is a popular semiparasitic plant that absorbs nutrients from the host plant through the haustoria to meet its own growth and development needs. Because the whole plant has a high use value, due to the high production value of its perfume oils, it is known as the “tree of gold”. Based on the full-length transcriptome data of S. album, nine Rac gene members were named SaRac1-9, and we analyzed their physicochemical properties. Evolutionary analysis showed that SaRac1-7, AtRac1-6, AtRac9 and AtRac11 and OsRac5, OsRacB and OsRacD belong to the typical plant type I Rac/Rop protein, while SaRac8-9, AtRac7, AtRac8, AtRac10 and OsRac1-4 belong to the type II Rac/ROP protein. Tissue-specific expression analysis showed that nine genes were expressed in roots, stems, leaves and haustoria, and SaRac7/8/9 expression in stems, haustoria and roots was significantly higher than that in leaves. The expression levels of SaRac1, SaRac4 and SaRac6 in stems were very low, and the expression levels of SaRac2 and SaRac5 in roots and SaRac2/3/7 in haustoria were very high, which indicated that these genes were closely related to the formation of S. album haustoria. To further analyze the function of SaRac, nine Rac genes in sandalwood were subjected to drought stress and hormone treatments. These results establish a preliminary foundation for the regulation of growth and development in S. album by SaRac
    corecore