13 research outputs found
Partitioning of Distributed MIMO Systems based on Overhead Considerations
Distributed-Multiple Input Multiple Output (DMIMO) networks is a promising
enabler to address the challenges of high traffic demand in future wireless
networks. A limiting factor that is directly related to the performance of
these systems is the overhead signaling required for distributing data and
control information among the network elements. In this paper, the concept of
orthogonal partitioning is extended to D-MIMO networks employing joint
multi-user beamforming, aiming to maximize the effective sum-rate, i.e., the
actual transmitted information data. Furthermore, in order to comply with
practical requirements, the overhead subframe size is considered to be
constrained. In this context, a novel formulation of constrained orthogonal
partitioning is introduced as an elegant Knapsack optimization problem, which
allows the derivation of quick and accurate solutions. Several numerical
results give insight into the capabilities of D-MIMO networks and the actual
sum-rate scaling under overhead constraints.Comment: IEEE Wireless Communications Letter
Adaptive Subcarrier PSK Intensity Modulation in Free Space Optical Systems
We propose an adaptive transmission technique for free space optical (FSO)
systems, operating in atmospheric turbulence and employing subcarrier phase
shift keying (S-PSK) intensity modulation. Exploiting the constant envelope
characteristics of S-PSK, the proposed technique offers efficient utilization
of the FSO channel capacity by adapting the modulation order of S-PSK,
according to the instantaneous state of turbulence induced fading and a
pre-defined bit error rate (BER) requirement. Novel expressions for the
spectral efficiency and average BER of the proposed adaptive FSO system are
presented and performance investigations under various turbulence conditions
and target BER requirements are carried out. Numerical results indicate that
significant spectral efficiency gains are offered without increasing the
transmitted average optical power or sacrificing BER requirements, in
moderate-to-strong turbulence conditions. Furthermore, the proposed variable
rate transmission technique is applied to multiple input multiple output (MIMO)
FSO systems, providing additional improvement in the achieved spectral
efficiency as the number of the transmit and/or receive apertures increases.Comment: Submitted To IEEE Transactions On Communication