11 research outputs found
Capture and Reaction of CO<sub>2</sub> and H<sub>2</sub> Catalyzed by a Complex of Coronene: A Computational Study
An organometallic complex of coronene (Cor) and chromium (Cr) was designed and used as a catalyst in a simulated process in which a CO2 molecule is captured, activated, and then reacts with a hydrogen molecule (H2) to yield formic acid (HCOOH). The structural characteristics and local aromaticity are due to the similarity in the binding scheme with the bis(benzene)chromium (Cr-Bz2). Such a molecular fragment, referred to here as a âClarâs siteâ, involves a single chromium atom that binds to CO2 by transferring electron density through backdonation. Therefore, the capture of CO2 outside the Cr3-Cor2 complex allows for the carrying out of a hydrogenation process that involves the breaking of one of the CâO bonds, the double addition of hydrogen, the formation of HCOOH and its release, regenerating the structure of the Cr3-Cor2 complex. The thermodynamic and kinetic results of this reaction are analyzed, as well as the nature of the orbitals and the relevant interactions of this process. This work explores a new concept for the creation of single atom catalysts (SACs), taking advantage of the high electron density around the metallic center and the sandwich architecture, having shown that it can perform the catalytic reduction of CO2
Effect of the Acid Medium on the Synthesis of Polybenzimidazoles Using Eatonâs Reagent
The influence of trifluoromethanesulfonic (TFSA) superacid on conditions of the synthesis of polybenzimidazoles, such as OPBI and CF3PBI, was studied. It was shown that the polycondensations proceeded smoother and at lower temperatures in the presence of the TFSA in Eatonâs Reagent and that polymers of high molecular weights, and readily soluble in organic solvents, were obtained. The effect was more pronounced for CF3PBI, where the low reactivity monomer, 4,4âČ (hexafluoroisoproylidene)bis (benzoic acid), was used. CF3PBI was obtained at a moderate temperature of 140 °C with no gel fraction and exhibited an inherent viscosity twice higher than the one obtained by the traditional method. In fact, the addition of TFSA allows the obtention of soluble N-phenyl substituted CF3PBI by direct synthesis, which had not been obtained otherwise. Thus, the use of TFSA is a good media for the synthesis of N-substituted PBIs under relatively mild conditions
Deposit and Characterization of Semiconductor Films Based on Maleiperinone and Polymeric Matrix of (Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate)
The development of small semiconductor molecules such as the maleiperinone, have gained importance due to their applications in optoelectronics. In this work semiconductor films composed by a polymer matrix of PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) and maleiperinone were manufactured. The films used in the studies were deposited by vacuum evaporation and spin-coating techniques. Atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Infrared spectroscopy were used for the analysis of morphological and structural films. The fundamental and the onset of the direct and indirect band gaps were also obtained by UV-vis spectroscopy. The band-model theory and the Density-functional theory (DFT) calculations were applied to determine the optical parameters. The dipole moment is 3.33 Db, and the high polarity gives a signal of the heterogeneous charge distribution along the structure of maleiperinone. Simple devices were made from the films and their electrical behavior was subsequently evaluated. The presence of the polymer decreased the energy barrier between the film and the anode, favoring the transport of charges in the device. Graphene decreased the absorption and its ohmic behavior make it a candidate to be used as a transparent electrode in optoelectronic devices. Finally, the MoO3 provides a behavior similar to a dielectric
Deposit and Characterization of Semiconductor Films Based on Maleiperinone and Polymeric Matrix of (Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate)
The development of small semiconductor molecules such as the maleiperinone, have gained importance due to their applications in optoelectronics. In this work semiconductor films composed by a polymer matrix of PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) and maleiperinone were manufactured. The films used in the studies were deposited by vacuum evaporation and spin-coating techniques. Atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Infrared spectroscopy were used for the analysis of morphological and structural films. The fundamental and the onset of the direct and indirect band gaps were also obtained by UV-vis spectroscopy. The band-model theory and the Density-functional theory (DFT) calculations were applied to determine the optical parameters. The dipole moment is 3.33 Db, and the high polarity gives a signal of the heterogeneous charge distribution along the structure of maleiperinone. Simple devices were made from the films and their electrical behavior was subsequently evaluated. The presence of the polymer decreased the energy barrier between the film and the anode, favoring the transport of charges in the device. Graphene decreased the absorption and its ohmic behavior make it a candidate to be used as a transparent electrode in optoelectronic devices. Finally, the MoO3 provides a behavior similar to a dielectric