239 research outputs found
Rewriting magnetic phase change memory by laser heating
Magnetic phase change memory (MAG PCM) consists of bits with different magnetic permeability values. The bits are read by measuring their effect on a magnetic probe field. Previously low permeability crystalline bits had been written in high permeability amorphous films of Metglas via laser heating. Here data is presented showing that by applying short laser pulses with the appropriate power to previously crystallized regions they can first be vitrified and then again crystallized. Thus, MAG PCM is rewriteable. Technical issues in processing the bits are discussed and results on thermal modeling are presented
Magnetization precession and domainwall structure in cobalt-ruthenium-cobalt trilayers
The magnetization dynamics of Co(5 nm)/Ru/Co(5 nm) trilayers with Ru thicknesses from 0.3–0.6 nm is experimentally and theoretically investigated. The coupling between the Co layers is antiferromagnetic (AFM) and yields a stable AFM domain structure with frozen domain walls. Comparing high-resolution magnetic force microscopy (MFM) and pump-probe measurements, we analyze the behavior of the films for different field-strength regimes. For moderate magnetic fields, pump-probe measurements provide dynamic characterization of the coupled precessional modes in the GHz range. The dynamics at small fields is realized by the pinning of AFM domain walls at inhomogeneities. The MFM images yield a domain-wall width that varies from about 150–60 nm. This behavior is explained in terms of a micromagnetic local-anisotropy model
ESR investigations on Ca perovskite
Electron spin resonance studies on fine powders of La0.65Ca0.35MnO3, performed in the X band, are reported. The coexistence of paramagnetic and ferromagnetic phases, in a narrow temperature range close to the Curie temperature, is observed. The electron spin resonance measurements do not support the presence of bipolarons above the Curie temperature. Temperature dependence of the ESR linewidth is governed by the hopping of polarons and the corresponding activation energy is about 150 meV above Tc
Tunneling magnetoresistance sensors with different coupled free layers
Large differences of magnetic coercivity (HC), exchange coupling field (HE), and tun- neling magnetoresistance ratio (TMR) in magnetic tunnel junctions with different coupled free layers are discussed. We demonstrate that the magnetization behavior of the free layer is not only dominated by the interfacial barrier layer but also affected largely by the magnetic or non-magnetic coupled free layers. All these parameters are sensitively controlled by the magnetic nanostructure, which can be tuned also by the magnetic annealing process. The optimized sensors exhibit a large field sensitivity of up to 261%/mT in the region of the reversal synthetic ferri- magnet at the pinned layers
Plasmon Enhanced Quantum Properties of Single Photon Emitters with Hybrid Hexagonal Boron Nitride Silver Nanocube Systems
Hexagonal boron nitride (hBN) has emerged as a promising ultrathin host of
single photon emitters (SPEs) with favorable quantum properties at room
temperature, making it a highly desirable element for integrated quantum
photonic networks. One major challenge of using these SPEs in such applications
is their low quantum efficiency. Recent studies have reported an improvement in
quantum efficiency by up to two orders of magnitude when integrating an
ensemble of emitters such as boron vacancy defects in multilayered hBN flakes
embedded within metallic nanocavities. However, these experiments have not been
extended to SPEs and are mainly focused on multiphoton effects. Here, we study
the quantum single photon properties of hybrid nanophotonic structures composed
of SPEs created in ultrathin hBN flakes coupled with plasmonic silver
nanocubes. We demonstrate > 200% plasmonic enhancement of the SPE properties,
manifested by a strong increase in the SPE fluorescence. Such enhancement is
explained by rigorous numerical simulations where the hBN flake is in direct
contact with the Ag nanocubes that cause the plasmonic effects. The presented
strong and fast single photon emission obtained at room-temperature with a
compact hybrid nanophotonic platform can be very useful to various emerging
applications in quantum optical communications and computing
Detection of Iron in Nanoclustered Cytochrome C Proteins Using Nitrogen-Vacancy Magnetic Relaxometry
Nitrogen-vacancy (NV) magnetometry offers an alternative tool to detect iron
levels in neurons and cells with a favorable combination of magnetic
sensitivity and spatial resolution. Here we employ NV-T1 relaxometry to detect
Fe in cytochrome C (Cyt-C) nanoclusters. Cyt-C is a water-soluble protein that
contains a single heme group and plays a vital role in the electron transport
chain of mitochondria. Under ambient conditions, the heme group remains in the
Fe+3 paramagnetic state. We perform NV-T1 relaxometry on a functionalized
diamond chip and vary the concentration of Cyt-C from 6 uM to 54 uM, resulting
in a decrease of T1 from 1.2 ms to 150 us, respectively. This reduction is
attributed to spin-noise originating from the Fe spins present within the
Cyt-C. We perform relaxometry imaging of Cyt-C proteins on a nanostructured
diamond chip by varying the density of adsorbed iron from 1.44 x 10^6 to 1.7 x
10^7 per um^2
L10 CrPt phase formation and magnetic properties
L10-ordered antiferromagnetic CrPt is of interest as a pinning material in exchange-biased system due to its many intriguing properties and such alloy with a (001) texture has also been used to serve as an underlayer to promote the L10 phase formation of other materials. Therefore, it is important to control not only the L10 phase formation of such material but also the texture of its ordered phase. A systematic study of the L10 phase formation of CrPt thin film was performed. The anisotropy of CrPt L10 phase has also been investigated both experimentally using CrPt/Fe bilayer system and theoretically using first principle calculation. The experimental result is in consistent with the theoretical estimation within the present thin film limitation
Costs associated with febrile neutropenia in solid tumor and lymphoma patients - an observational study in Singapore.
BackgroundThe primary objective was to describe the total direct inpatient costs among solid tumor and lymphoma patients with chemotherapy-induced febrile neutropenia (FN) and the factors that were associated with higher direct cost. The secondary objective was to describe the out-of-pocket patient payments and the factors that were associated with higher out-of-pocket patient payments.MethodsThis was a single-center observational study conducted at the largest cancer center in Singapore. All of the adult cancer patients hospitalized due to FN from 2009 to 2012 were studied. The primary outcomes were the total hospital cost and the out-of-pocket patient payments (adjusted by government subsidy) per FN episode. Univariate analysis and multiple linear regression were conducted to identify the factors associated with higher FN costs.ResultsThree hundred and sixty seven adult cancer patients were documented with FN-related hospitalizations. The mean total hospital cost was US3,779-4,607) and the mean out-of-pocket patient payment was US1,976-2,484), per FN episode. The factors associated with a higher total hospital cost were longer length of stay, severe sepsis, and lymphoma as underlying cancer. The out-of-pocket patient payment was positively associated with longer length of stay, severe sepsis, lymphoma diagnosed as underlying cancer, the therapeutic use of granulocyte colony-stimulating factor (GCSF), the private ward class, and younger patients.ConclusionsThe total hospital cost and out-of-pocket patient payments of FN management in lymphoma cases were substantial compared with other solid tumors. Factors associated with a higher FN management cost may be useful for developing appropriate strategies to reduce the cost of FN for cancer patients
Adjusting magnetic nanostructures for high-performance magnetic sensors
The magnetic properties of the soft ferromagnetic layer in magnetic tunnel junctions are one of key factors to determine the performance of magnetoresistance sensors. We use a three-step orthogonal annealing procedure to modify the nanostructures of the free layer in the magnetic tunnel junction to control features such as magnetization reversal, coercivity, exchange field, and tunnel magnetoresistance ratio. We present a sensor with an improved sensitivity as high as 3944%/mT. This magnetic sensor only dissipates 200 lW of power while operating under an applied voltage of 1V
- …