2,324 research outputs found
Remote sensing of tropical tropopause layer radiation balance using A-train measurements
Determining the level of zero net radiative heating (LZH) is critical to understanding parcel trajectory in the Tropical Tropopause Layer (TTL) and associated stratospheric hydration processes. Previous studies of the TTL radiative balance have focused on using radiosonde data, but remote sensing measurements from polar-orbiting satellites may provide the relevant horizontal and vertical information for assessing TTL solar heating and infrared cooling rates, especially across the Pacific Ocean. CloudSat provides a considerable amount of vertical information about the distribution of cloud properties relevant to heating rate analysis. The ability of CloudSat measurements and ancillary information to constrain LZH is explored. We employ formal error propagation analysis for derived heating rate uncertainty given the CloudSat cloud property retrieval algorithms. Estimation of the LZH to within approximately 0.5 to 1 km is achievable with CloudSat, but it has a low-altitude bias because the radar is unable to detect thin cirrus. This can be remedied with the proper utilization of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar backscatter information. By utilizing an orbital simulation with the GISS data set, we explore the representativeness of non-cross-track scanning active sounders in terms of describing the LZH distribution. In order to supplement CloudSat, we explore the ability of Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) to constrain LZH and find that these passive sounders are useful where the cloud top height does not exceed 7 km. The spatiotemporal distributions of LZH derived from CloudSat and CALIPSO measurements are presented which suggest that thin cirrus have a limited effect on LZH mean values but affect LZH variability
Anatomy of the Soft-Photon Approximation in Hadron-Hadron Bremsstrahlung
A modified Low procedure for constructing soft-photon amplitudes has been
used to derive two general soft-photon amplitudes, a two-s-two-t special
amplitude and a two-u-two-t special amplitude
, where s, t and u are the Mandelstam variables.
depends only on the elastic T-matrix evaluated at four sets
of (s,t) fixed by the requirement that the amplitude be free of derivatives
(T/s and /or T/). Likewise
depends only on the elastic T-matrix evaluated at four sets
of (u,t). In deriving these amplitudes, we impose the condition that
and reduce to and
, respectively, their tree level approximations. The
amplitude represents photon emission from a sum of
one-particle t-channel exchange diagrams and one-particle s-channel exchange
diagrams, while the amplitude represents photon
emission from a sum of one-particle t-channel exchange diagrams and
one-particle u-channel exchange diagrams. The precise expressions for
and are determined by using the
radiation decomposition identities of Brodsky and Brown. We point out that it
is theoretically impossible to describe all bremsstrahlung processes by using
only a single class of soft-photon amplitudes. At least two different classes
are required: the amplitudes which depend on s and t or the amplitudes which
depend on u and t. When resonance effects are important, the amplitude
, not , should be used. For processes with
strong u-channel exchange effects, the amplitude should be
the first choice.Comment: 49 pages report # LA-UR-92-270
Investigation and Comparison between New Satellite Impact Test Results and NASA Standard Breakup Model
This paper summarizes two new satellite impact tests conducted in order to investigate on the outcome of low- and hyper-velocity impacts on two identical target satellites. The first experiment was performed at a low velocity of 1.5 km/s using a 40-gram aluminum alloy sphere, whereas the second experiment was performed at a hyper-velocity of 4.4 km/s using a 4-gram aluminum alloy sphere by two-stage light gas gun in Kyushu Institute of Technology. To date, approximately 1,500 fragments from each impact test have been collected for detailed analysis. Each piece was analyzed based on the method used in the NASA Standard Breakup Model 2000 revision. The detailed analysis will conclude: 1) the similarity in mass distribution of fragments between low and hyper-velocity impacts encourages the development of a general-purpose distribution model applicable for a wide impact velocity range, and 2) the difference in area-to-mass ratio distribution between the impact experiments and the NASA standard breakup model suggests to describe the area-to-mass ratio by a bi-normal distribution
Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3
We studied the defects of Bi2Se3 generated from Bridgman growth of
stoichiometric and nonstoichiometric self-fluxes. Growth habit, lattice size,
and transport properties are strongly affected by the types of defect
generated. Major defect types of Bi_Se antisite and partial Bi_2-layer
intercalation are identified through combined studies of direct atomic-scale
imaging with scanning transmission electron microscopy (STEM) in conjunction
with energy-dispersive X-ray spectroscopy (STEM-EDX), X-ray diffraction, and
Hall effect measurements. We propose a consistent explanation to the origin of
defect type, growth morphology, and transport property.Comment: 5 pages, 5 figure
Average Cross-Sectional Area of DebriSat Fragments Using Volumetrically Constructed 3D Representations
Debris fragments from the hypervelocity impact testing of DebriSat are being collected and characterized for use in updating existing satellite breakup models. One of the key parameters utilized in these models is the ballistic coefficient of the fragment which is directly related to its areatomass ratio. However, since the attitude of fragments varies during their orbital lifetime, it is customary to use the average crosssectional area in the calculation of the areatomass ratio. The average crosssectional area is defined as the average of the projected surface areas perpendicular to the direction of motion and has been shown to be equal to onefourth of the total surface area of a convex object. Unfortunately, numerous fragments obtained from the DebriSat experiment show significant concavity (i.e., shadowing) and thus we have explored alternate methods for computing the average crosssectional area of the fragments. An imaging system based on the volumetric reconstruction of a 3D object from multiple 2D photographs of the object was developed for use in determining the size characteristic (i.e., characteristics length) of the DebriSat fragments. For each fragment, the imaging system generates N number of images from varied azimuth and elevation angles and processes them using a spacecarving algorithm to construct a 3D point cloud of the fragment. This paper describes two approaches for calculating the average crosssectional area of debris fragments based on the 3D imager. Approach A utilizes the constructed 3D object to generate equally distributed crosssectional area projections and then averages them to determine the average crosssectional area. Approach B utilizes a weighted average of the area of the 2D photographs to directly compute the average crosssectional area. A comparison of the accuracy and computational needs of each approach is described as well as preliminary results of an analysis to determine the "optimal" number of images needed for the 3D imager to accurately measure the average cross sectional area of objects with known dimensions
Biomass burning contribution to black carbon in the Western United States Mountain Ranges
Forest fires are an important source to carbonaceous aerosols in the Western United States (WUS). We quantify the relative contribution of biomass burning to black carbon (BC) in the WUS mountain ranges by analyzing surface BC observations for 2006 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using the GEOS-Chem global chemical transport model. Observed surface BC concentrations show broad maxima during late June to early November. Enhanced potassium concentrations and potassium/sulfur ratios observed during the high-BC events indicate a dominant biomass burning influence during the peak fire season. Model surface BC reproduces the observed day-to day and synoptic variabilities in regions downwind of but near urban centers. Major discrepancies are found at elevated mountainous sites during the July-October fire season when simulated BC concentrations are biased low by a factor of two. We attribute these low biases largely to the underestimated (by more than a factor of two) and temporally misplaced biomass burning emissions of BC in the model. Additionally, we find that the biomass burning contribution to surface BC concentrations in the USA likely was underestimated in a previous study using GEOS-Chem (Park et al., 2003), because of the unusually low planetary boundary layer (PBL) heights in the GEOS-3 meteorological reanalysis data used to drive the model. PBL heights from GEOS-4 and GEOS-5 reanalysis data are comparable to those from the North American Regional Reanalysis (NARR). Model simulations show slightly improved agreements with the observations when driven by GEOS-5 reanalysis data, but model results are still biased low. The use of biomass burning emissions with diurnal cycle, synoptic variability, and plume injection has relatively small impact on the simulated surface BC concentrations in the WUS
Dynamical model for Pion - Nucleon Bremsstrahlung
A dynamical model based on effective Lagrangians is proposed to describe the
bremsstrahlung reaction at low energies. The
degrees of freedom are incorporated in a way consistent with
both, electromagnetic gauge invariance and invariance under contact
transformations. The model also includes the initial and final state
rescattering of hadrons via a T-matrix with off-shell effects. The differential cross sections are calculated using three different
T-matrix models and the results are compared with the soft photon
approximation, and with experimental data. The aim of this analysis is to test
the off-shell behavior of the different T-matrices under consideration.Comment: 16 pages, latex, 6 eps figures. Accepted for publication in Physical
Review
PERFLUOROOCTANE SULFONATE (PFOS) AND PERFLUOROOCTANOATE (PFOA) CONTAMINATION OF WATER ENVIRONMENT IN ASIAN COUNTRIES
Joint Research on Environmental Science and Technology for the Eart
Electronic-structure modifications induced by surface segregation in La\u3csub\u3e0.65\u3c/sub\u3ePb\u3csub\u3e0.35\u3c/sub\u3eMnO\u3csub\u3e3\u3c/sub\u3e thin films
Using spin-polarized inverse photoemission and X-ray absorption spectroscopy techniques, we show that the electronic structure of La0.65Pb0.35MnO3 thin films depends on the composition at the surface. With a gentle annealing procedure, the surface provides a maximum of 80% spin asymmetry at 0.5 eV above the Fermi level in spite of extensive Pb segregation. A heavily annealed (restructured) surface exhibits a reduced surface ordering temperature of 240 K (compared to the approximately 335 K bulk value) as well as a reduced spin asymmetry value of 40% at 0.5 eV above Fermi energy
- …