27 research outputs found

    Laminin γ1 chain peptide, C-16 (KAFDITYVRLKF), promotes migration, MMP-9 secretion, and pulmonary metastasis of B16–F10 mouse melanoma cells

    Get PDF
    Laminin-1, a heterotrimer of α1, β1, and γ1 chains specific to basement membrane, promotes cell adhesion and migration, proteinase secretion and metastases of tumour cells. Several active sites on the α1 chain have been found to promote B16–F10 melanoma lung colonisation and here we have determined whether additional tumour promoting sites exist on the β1 and γ1 chains. Recently, we have identified novel cell adhesive peptides derived from laminin β1 and γ1 chains by systematic screening of synthetic peptides. Nine β1 peptides and seven γ1 peptides active for cell adhesion were tested for their effects on experimental pulmonary metastases of B16–F10 mouse melanoma cells in vivo. The most active adhesive peptide derived from the γ1 chain globular domain, C-16 (KAFDITYVRLKF), significantly enhanced pulmonary metastases of B16–F10 cells, whereas no other peptides showed enhancement. C-16 also stimulated migration of B16–F10 cells in the Boyden chamber assay in vitro. Furthermore, C-16 significantly induced the production of MMP-9 from B16–F10 cells. These results suggest that this specific laminin γ1 chain peptide has a metastasis-promoting activity and might be a new molecular target of anti-cancer treatment

    The N-Myc Down Regulated Gene1 (NDRG1) Is a Rab4a Effector Involved in Vesicular Recycling of E-Cadherin

    Get PDF
    Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein
    corecore