21 research outputs found
Second breast cancer: recurrence score results, clinicopathologic characteristics, adjuvant treatments, and outcomes—exploratory analysis of the Clalit registry
Abstract Data on using the 21-gene Recurrence Score (RS) testing on second breast cancer (BC; second primary or local recurrence) are lacking. This cohort study examined patients with first and second BC, who underwent 21-gene testing both times. It included a ‘study-cohort’ (60 N0/N1mi/N1 ER + HER2‒ BC patients with ≥2 RS results >1 year apart) and a ‘general 21-gene-tested BC-cohort’ (2044 previously described N0/N1mi/N1 patients). The median time between the first and second BC was 5.2 (IQR, 3.1–7.1) years; the second BC was ipsilateral in 68%. Patient/tumor characteristics of the first- and second-BC in the ‘study-cohort’ were similar, except for the RS which was higher in the second BC (median [IQR]: 23 [17–30] vs 17 [14–22], p < 0.001). Overall, 56 patients had follow-up data, of whom 5 experienced distant recurrence (2 RS 11–25 patients and 3 RS 26–100 patients). Studies exploring the prognostic utility of the RS in this setting are warranted
Molecular Profiling-Selected Therapy for Treatment of Advanced Pancreaticobiliary Cancer: A Retrospective Multicenter Study
This multicenter cohort study assessed the impact of molecular profiling (MP) on advanced pancreaticobiliary cancer (PBC). The study included 30 patients treated with MP-guided therapy after failing ≥1 therapy for advanced PBC. Treatment was considered as having benefit for the patient if the ratio between the longest progression-free survival (PFS) on MP-guided therapy and the PFS on the last therapy before MP was ≥1.3. The null hypothesis was that ≤15% of patients gain such benefit. Overall, ≥1 actionable (i.e., predictive of response to specific therapies) biomarker was identified/patient. Immunohistochemistry (the most commonly used method for guiding treatment decisions) identified 1–6 (median: 4) actionable biomarkers per patient. After MP, patients received 1–4 (median: 1) regimens/patient (most commonly, FOLFIRI/XELIRI). In a decision-impact analysis, of the 27 patients for whom treatment decisions before MP were available, 74.1% experienced a treatment decision change in the first line after MP. Twenty-four patients were evaluable for clinical outcome analysis; in 37.5%, the PFS ratio was ≥1.3. In one-sided exact binomial test versus the null hypothesis, P = 0.0015; therefore, the null hypothesis was rejected. In conclusion, our analysis demonstrated the feasibility, clinical decision impact, and potential clinical benefits of MP-guided therapy in advanced PBC
FGFR Fusions as an Acquired Resistance Mechanism Following Treatment with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR TKIs) and a Suggested Novel Target in Advanced Non-Small Cell Lung Cancer (aNSCLC)
Background. FGFR1/2/3 fusions have been reported infrequently in aNSCLC, including as a rare, acquired resistance mechanism following treatment with EGFR TKIs. Data regarding their prevalence and therapeutic implications are limited. Methods. The Guardant Health (GH) electronic database (ED) was evaluated for cases of aNSCLC and FGFR2/3 fusions; FGFR2/3 fusion prevalence with and without a co-existing EGFR mutation was assessed. The ED of Tel-Aviv Sourasky Medical Center (TASMC, June 2020–June 2021) was evaluated for cases of aNSCLC and de novo FGFR1/2/3 fusions. Patients with EGFR mutant aNSCLC progressing on EGFR TKIs and developing an FGFR1/2/3 fusion were selected from the ED of Davidoff Cancer Center (DCC) and Oncology Department, Bnei-Zion hospital (BZ) (April 2014–April 2021). Clinicopathological characteristics, systemic therapies, and outcomes were assessed. Results. In the GH ED (n = 57,445), the prevalence of FGFR2 and FGFR3 fusions were 0.02% and 0.26%, respectively. FGFR3-TACC3 fusion predominated (91.5%). In 23.8% of cases, FGFR2/3 fusions co-existed with EGFR sensitizing mutations (exon 19 del, 64.1%; L858R, 33.3%, L861Q, 2.6%). Among samples with concurrent FGFR fusions and EGFR sensitizing mutations, 41.0% also included EGFR resistant mutations. In TASMC (n = 161), 1 case of de novo FGFR3-TACC3 fusion was detected (prevalence, 0.62%). Of three patients from DCC and BZ with FGFR3-TACC3 fusions following progression on EGFR TKIs, two received EGFR TKI plus erdafitinib, an FGFR TKI, with clinical benefit duration of 13.0 and 6.0 months, respectively. Conclusions. Over 23% of FGFR2/3 fusions in aNSCLC may be associated with acquired resistance following treatment with EGFR TKIs. In this clinical scenario, a combination of EGFR TKIs and FGFR TKIs represents a promising treatment strategy