3 research outputs found

    The small-molecule iron transport inhibitor ferristatin/NSC306711 promotes degradation of the transferrin receptor

    Get PDF
    Iron delivery by transferrin (Tf) is accomplished through clathrin-mediated endocytosis of Tf receptors. The small molecule NSC306711 inhibits iron uptake from the Tf-TfR pathway. Here we show that the drug\u27s mechanism of action is to induce internalization and degradation of unoccupied Tf receptors through an unexpected endocytic pathway. Unlike classical clathrin-mediated Tf receptor endocytosis, internalization promoted by NSC306711 is independent of clathrin and dynamin, and is sensitive to the cholesterol-depleting agents filipin and nystatin. The finding of this cholesterol-dependent Tf receptor internalization pathway through use of the small-molecule inhibitor sheds light on the pleiotropic nature of membrane trafficking dynamics and adds a complex dimension to our understanding of receptor regulation. Because of its unusual properties to inhibit iron uptake, we refer to NSC306711 as ferristatin

    Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein

    No full text
    Prion diseases propagate by converting a normal glycoprotein of the host, PrP(C), into a pathogenic ‘prion’ conformation. Several misfolding mutants of PrP(C) are degraded through the ER-associated degradation (ERAD)–proteasome pathway. In their infectious form, prion diseases such as bovine spongiform encephalopathy involve PrP(C) of wild-type sequence. In contrast to mutant PrP, wild-type PrP(C) was hitherto thought to be stable in the ER and thus immune to ERAD. Using proteasome inhibitors, we now show that ∼10% of nascent PrP(C) molecules are diverted into the ERAD pathway. Cells incubated with N-acetyl-leucinal-leucinal-norleucinal (ALLN), lactacystin or MG132 accumulated both detergent-soluble and insoluble PrP species. The insoluble fraction included an unglycosylated 26 kDa PrP species with a protease-resistant core, and a M(r) ‘ladder’ that contained ubiquitylated PrP. Our results show for the first time that wild-type PrP(C) molecules are subjected to ERAD, in the course of which they are dislocated into the cytosol and ubiquitylated. The presence of wild-type PrP molecules in the cytosol may have potential pathogenic implications
    corecore