63 research outputs found

    Left Ventricular Systolic Dysfunction Due to Atrial Fibrillation: Clinical and Echocardiographic Predictors

    Get PDF
    Background: Diagnosis of AF-induced cardiomyopathy can be challenging and relies on ruling out other causes of cardiomyopathy and, after restoration of sinus rhythm, recovery of left ventricular (LV) function. The aim of this study was to identify clinical and echocardiographic predictors for developing cardiomyopathy with systolic dysfunction in patients with atrial tachyarrhythmia. Methods: This retrospective study was conducted in a large tertiary care centre and compared patients who experienced deterioration of LV ejection fraction (EF) during paroxysmal AF, demonstrated by precardioversion transoesophageal echocardiography with patients with preserved LV function during AF. All patients had documented preserved LVEF at baseline (EF >50%) while in sinus rhythm. Results: Of 482 patients included in the final analysis, 80 (17%) had reduced and 402 (83%) had preserved LV function during the precardioversion transoesophageal echocardiography. Patients with reduced LVEF were more likely to be men and to have a more rapid ventricular response during AF or atrial flutter (AFL). A history of prosthetic valves was also identified as a risk factor for reduced LVEF. Patients with reduced LVEF also had higher incidence of tricuspid regurgitation and right ventricular dysfunction. Conclusion: In ‘real-world’ experience, male patients with rapid ventricular response during paroxysmal AF or AFL are more prone to LVEF reduction. Patients with prosthetic valves are also at risk for LVEF reduction during AF/AFL. Finally, tricuspid regurgitation and right ventricular dysfunction may indicate relatively long-standing AF with an associated reduction in LVEF

    Gene- and variant-specific efficacy of serum/glucocorticoid-regulated kinase 1 inhibition in long QT syndrome types 1 and 2.

    Get PDF
    AIMS Current long QT syndrome (LQTS) therapy, largely based on beta-blockade, does not prevent arrhythmias in all patients; therefore, novel therapies are warranted. Pharmacological inhibition of the serum/glucocorticoid-regulated kinase 1 (SGK1-Inh) has been shown to shorten action potential duration (APD) in LQTS type 3. We aimed to investigate whether SGK1-Inh could similarly shorten APD in LQTS types 1 and 2. METHODS AND RESULTS Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hiPSC-cardiac cell sheets (CCS) were obtained from LQT1 and LQT2 patients; CMs were isolated from transgenic LQT1, LQT2, and wild-type (WT) rabbits. Serum/glucocorticoid-regulated kinase 1 inhibition effects (300 nM-10 µM) on field potential durations (FPD) were investigated in hiPSC-CMs with multielectrode arrays; optical mapping was performed in LQT2 CCS. Whole-cell and perforated patch clamp recordings were performed in isolated LQT1, LQT2, and WT rabbit CMs to investigate SGK1-Inh (3 µM) effects on APD. In all LQT2 models across different species (hiPSC-CMs, hiPSC-CCS, and rabbit CMs) and independent of the disease-causing variant (KCNH2-p.A561V/p.A614V/p.G628S/IVS9-28A/G), SGK1-Inh dose-dependently shortened FPD/APD at 0.3-10 µM (by 20-32%/25-30%/44-45%). Importantly, in LQT2 rabbit CMs, 3 µM SGK1-Inh normalized APD to its WT value. A significant FPD shortening was observed in KCNQ1-p.R594Q hiPSC-CMs at 1/3/10 µM (by 19/26/35%) and in KCNQ1-p.A341V hiPSC-CMs at 10 µM (by 29%). No SGK1-Inh-induced FPD/APD shortening effect was observed in LQT1 KCNQ1-p.A341V hiPSC-CMs or KCNQ1-p.Y315S rabbit CMs at 0.3-3 µM. CONCLUSION A robust SGK1-Inh-induced APD shortening was observed across different LQT2 models, species, and genetic variants but less consistently in LQT1 models. This suggests a genotype- and variant-specific beneficial effect of this novel therapeutic approach in LQTS

    Calcium Handling in Human Induced Pluripotent Stem Cell Derived Cardiomyocytes

    Get PDF
    BACKGROUND: The ability to establish human induced pluripotent stem cells (hiPSCs) by reprogramming of adult fibroblasts and to coax their differentiation into cardiomyocytes opens unique opportunities for cardiovascular regenerative and personalized medicine. In the current study, we investigated the Ca(2+)-handling properties of hiPSCs derived-cardiomyocytes (hiPSC-CMs). METHODOLOGY/PRINCIPAL FINDINGS: RT-PCR and immunocytochemistry experiments identified the expression of key Ca(2+)-handling proteins. Detailed laser confocal Ca(2+) imaging demonstrated spontaneous whole-cell [Ca(2+)](i) transients. These transients required Ca(2+) influx via L-type Ca(2+) channels, as demonstrated by their elimination in the absence of extracellular Ca(2+) or by administration of the L-type Ca(2+) channel blocker nifedipine. The presence of a functional ryanodine receptor (RyR)-mediated sarcoplasmic reticulum (SR) Ca(2+) store, contributing to [Ca(2+)](i) transients, was established by application of caffeine (triggering a rapid increase in cytosolic Ca(2+)) and ryanodine (decreasing [Ca(2+)](i)). Similarly, the importance of Ca(2+) reuptake into the SR via the SR Ca(2+) ATPase (SERCA) pump was demonstrated by the inhibiting effect of its blocker (thapsigargin), which led to [Ca(2+)](i) transients elimination. Finally, the presence of an IP3-releasable Ca(2+) pool in hiPSC-CMs and its contribution to whole-cell [Ca(2+)](i) transients was demonstrated by the inhibitory effects induced by the IP3-receptor blocker 2-Aminoethoxydiphenyl borate (2-APB) and the phospholipase C inhibitor U73122. CONCLUSIONS/SIGNIFICANCE: Our study establishes the presence of a functional, SERCA-sequestering, RyR-mediated SR Ca(2+) store in hiPSC-CMs. Furthermore, it demonstrates the dependency of whole-cell [Ca(2+)](i) transients in hiPSC-CMs on both sarcolemmal Ca(2+) entry via L-type Ca(2+) channels and intracellular store Ca(2+) release

    Stem cells as biological heart pacemakers

    No full text

    Electrophysiological Coupling of Transplanted Cardiomyocytes

    No full text

    Stem cells for myocardial repair

    No full text

    Cardiac optogenetics: the next frontier

    No full text
    • …
    corecore