764 research outputs found
Analytical Study of Certain Magnetohydrodynamic-alpha Models
In this paper we present an analytical study of a subgrid scale turbulence
model of the three-dimensional magnetohydrodynamic (MHD) equations, inspired by
the Navier-Stokes-alpha (also known as the viscous Camassa-Holm equations or
the Lagrangian-averaged Navier-Stokes-alpha model). Specifically, we show the
global well-posedness and regularity of solutions of a certain MHD-alpha model
(which is a particular case of the Lagrangian averaged
magnetohydrodynamic-alpha model without enhancing the dissipation for the
magnetic field). We also introduce other subgrid scale turbulence models,
inspired by the Leray-alpha and the modified Leray-alpha models of turbulence.
Finally, we discuss the relation of the MHD-alpha model to the MHD equations by
proving a convergence theorem, that is, as the length scale alpha tends to
zero, a subsequence of solutions of the MHD-alpha equations converges to a
certain solution (a Leray-Hopf solution) of the three-dimensional MHD
equations.Comment: 26 pages, no figures, will appear in Journal of Math Physics;
corrected typos, updated reference
Scattering and self-adjoint extensions of the Aharonov-Bohm hamiltonian
We consider the hamiltonian operator associated with planar sec- tions of
infinitely long cylindrical solenoids and with a homogeneous magnetic field in
their interior. First, in the Sobolev space , we characterize all
generalized boundary conditions on the solenoid bor- der compatible with
quantum mechanics, i.e., the boundary conditions so that the corresponding
hamiltonian operators are self-adjoint. Then we study and compare the
scattering of the most usual boundary con- ditions, that is, Dirichlet, Neumann
and Robin.Comment: 40 pages, 5 figure
Dichotomous Hamiltonians with Unbounded Entries and Solutions of Riccati Equations
An operator Riccati equation from systems theory is considered in the case
that all entries of the associated Hamiltonian are unbounded. Using a certain
dichotomy property of the Hamiltonian and its symmetry with respect to two
different indefinite inner products, we prove the existence of nonnegative and
nonpositive solutions of the Riccati equation. Moreover, conditions for the
boundedness and uniqueness of these solutions are established.Comment: 31 pages, 3 figures; proof of uniqueness of solutions added; to
appear in Journal of Evolution Equation
Variational assimilation of Lagrangian data in oceanography
We consider the assimilation of Lagrangian data into a primitive equations
circulation model of the ocean at basin scale. The Lagrangian data are
positions of floats drifting at fixed depth. We aim at reconstructing the
four-dimensional space-time circulation of the ocean. This problem is solved
using the four-dimensional variational technique and the adjoint method. In
this problem the control vector is chosen as being the initial state of the
dynamical system. The observed variables, namely the positions of the floats,
are expressed as a function of the control vector via a nonlinear observation
operator. This method has been implemented and has the ability to reconstruct
the main patterns of the oceanic circulation. Moreover it is very robust with
respect to increase of time-sampling period of observations. We have run many
twin experiments in order to analyze the sensitivity of our method to the
number of floats, the time-sampling period and the vertical drift level. We
compare also the performances of the Lagrangian method to that of the classical
Eulerian one. Finally we study the impact of errors on observations.Comment: 31 page
FINITE-ELEMENT APPROXIMATION OF THE PARABOLIC P-LAPLACIAN
Published versio
Analysis of some localized boundary-domain integral equations for transmission problems with variable coefficients
This is the post-print version of the Article. The official published version can be found at the links below - Copyright @ 2011 Birkhäuser Boston.Some segregated systems of direct localized boundary-domain integral equations (LBDIEs) associated with several transmission problems for scalar PDEs with variable coefficients are formulated and analyzed for a bounded domain composed of two subdomains with a coefficient jump over the interface. The main results established in the paper are the LBDIE equivalence to the original transmission problems and the invertibility of the corresponding localized boundary-domain integral operators in corresponding Sobolev spaces function spaces.This research was supported by the EPSRC grant EP/H020497/1: ”Mathematical analysis of Localized Boundary-Domain Integral
Equations for Variable-Coefficient Boundary Value Problems” and partly by the Georgian Technical University grant in the case of the third author
Blow up criterion for compressible nematic liquid crystal flows in dimension three
In this paper, we consider the short time strong solution to a simplified
hydrodynamic flow modeling the compressible, nematic liquid crystal materials
in dimension three. We establish a criterion for possible breakdown of such
solutions at finite time in terms of the temporal integral of both the maximum
norm of the deformation tensor of velocity gradient and the square of maximum
norm of gradient of liquid crystal director field.Comment: 22 page
Analysis of segregated boundary-domain integral equations for mixed variable-coefficient BVPs in exterior domains
This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 Birkhäuser Boston.Some direct segregated systems of boundary–domain integral equations (LBDIEs) associated with the mixed boundary value problems for scalar PDEs with variable coefficients in exterior domains are formulated and analyzed in the paper. The LBDIE equivalence to the original boundary value problems and the invertibility of the corresponding boundary–domain integral operators are proved in weighted Sobolev spaces suitable for exterior domains. This extends the results obtained by the authors for interior domains in non-weighted Sobolev spaces.The work was supported by the grant EP/H020497/1 ”Mathematical analysis of localised boundary-domain integral equations for BVPs with variable coefficients” of the EPSRC, UK
Mathematical results for some models of turbulence with critical and subcritical regularizations
In this paper, we establish the existence of a unique "regular" weak solution
to turbulent flows governed by a general family of models with
critical regularizations. In particular this family contains the simplified
Bardina model and the modified Leray- model. When the regularizations
are subcritical, we prove the existence of weak solutions and we establish an
upper bound on the Hausdorff dimension of the time singular set of those weak
solutions. The result is an interpolation between the bound proved by Scheffer
for the Navier-Stokes equations and the regularity result in the critical case
A class of well-posed parabolic final value problems
This paper focuses on parabolic final value problems, and well-posedness is
proved for a large class of these. The clarification is obtained from Hilbert
spaces that characterise data that give existence, uniqueness and stability of
the solutions. The data space is the graph normed domain of an unbounded
operator that maps final states to the corresponding initial states. It induces
a new compatibility condition, depending crucially on the fact that analytic
semigroups always are invertible in the class of closed operators. Lax--Milgram
operators in vector distribution spaces constitute the main framework. The
final value heat conduction problem on a smooth open set is also proved to be
well posed, and non-zero Dirichlet data are shown to require an extended
compatibility condition obtained by adding an improper Bochner integral.Comment: 16 pages. To appear in "Applied and numerical harmonic analysis"; a
reference update. Conference contribution, based on arXiv:1707.02136, with
some further development
- …