35 research outputs found

    Cardioprotective effects of lixisenatide in rat myocardial ischemia-reperfusion injury studies

    Get PDF
    BACKGROUND: Lixisenatide is a glucagon-like peptide-1 analog which stimulates insulin secretion and inhibits glucagon secretion and gastric emptying. We investigated cardioprotective effects of lixisenatide in rodent models reflecting the clinical situation. METHODS: The acute cardiac effects of lixisenatide were investigated in isolated rat hearts subjected to brief ischemia and reperfusion. Effects of chronic treatment with lixisenatide on cardiac function were assessed in a modified rat heart failure model after only transient coronary occlusion followed by long-term reperfusion. Freshly isolated cardiomyocytes were used to investigate cell-type specific mechanisms of lixisenatide action. RESULTS: In the acute setting of ischemia-reperfusion, lixisenatide reduced the infarct-size/area at risk by 36% ratio without changes on coronary flow, left-ventricular pressure and heart rate. Treatment with lixisenatide for 10 weeks, starting after cardiac ischemia and reperfusion, improved left ventricular end-diastolic pressure and relaxation time and prevented lung congestion in comparison to placebo. No anti-fibrotic effect was observed. Gene expression analysis revealed a change in remodeling genes comparable to the ACE inhibitor ramipril. In isolated cardiomyocytes lixisenatide reduced apoptosis and increased fractional shortening. Glucagon-like peptide-1 receptor (GLP1R) mRNA expression could not be detected in rat heart samples or isolated cardiomyocytes. Surprisingly, cardiomyocytes isolated from GLP-1 receptor knockout mice still responded to lixisenatide. CONCLUSIONS: In rodent models, lixisenatide reduced in an acute setting infarct-size and improved cardiac function when administered long-term after ischemia-reperfusion injury. GLP-1 receptor independent mechanisms contribute to the described cardioprotective effect of lixisenatide. Based in part on these preclinical findings patients with cardiac dysfunction are currently being recruited for a randomized, double-blind, placebo-controlled, multicenter study with lixisenatide. TRIAL REGISTRATION: (ELIXA, ClinicalTrials.gov Identifier: NCT01147250

    Mobile app-based symptom-rhythm correlation assessment in patients with persistent atrial fibrillation

    Get PDF
    Background: The assessment of symptom-rhythm correlation (SRC) in patients with persistent atrial fibrillation (AF) is challenging. Therefore, we performed a novel mobile app-based approach to assess SRC in persistent AF.Methods: Consecutive persistent AF patients planned for electrical cardioversion (ECV) used a mobile app to record a 60-s photoplethysmogram (PPG) and report symptoms once daily and in case of symptoms for four weeks prior and three weeks after ECV. Within each patient, SRC was quantified by the SRC-index defined as the sum of symptomatic AF recordings and asymptomatic non-AF recordings divided by the sum of all recordings.Results: Of 88 patients (33% women, age 68 +/- 9 years) included, 78% reported any symptoms during recordings. The overall SRC-index was 0.61 (0.44-0.79). The study population was divided into SRC-index tertiles: low (= 0.73). Patients within the low (vs high) SRC-index tertile had more often heart failure and diabetes mellitus (both 24.1% vs 6.9%). Extrasystoles occurred in 19% of all symptomatic non-AF PPG recordings. Within each patient, PPG recordings with the highest (vs lowest) tertile of pulse rates conferred an increased risk for symptomatic AF recordings (odds ratio [OR] 1.26, 95% coincidence interval [CI] 1.04-1.52) and symptomatic non-AF recordings (OR 2.93, 95% CI 2.16-3.97). Pulse variability was not associated with reported symptoms.Conclusions: In patients with persistent AF, SRC is relatively low. Pulse rate is the main determinant of reported symptoms. Further studies are required to verify whether integrating mobile app-based SRC assessment in current workflows can improve AF management

    Sleep Disordered Breathing and Cardiovascular Disease:JACC State-of-the-Art Review

    No full text
    Sleep disordered breathing causes repetitive episodes of nocturnal hypoxemia, sympathetic nervous activation, and cortical arousal, often associated with excessive daytime sleepiness. Sleep disordered breathing is common in people with, or at risk of, cardiovascular (CV) disease including those who are obese or have hypertension, coronary disease, heart failure, or atrial fibrillation. Current therapy of obstructive sleep apnea includes weight loss (if obese), exercise, and positive airway pressure (PAP) therapy. This improves daytime sleepiness. Obstructive sleep apnea is associated with increased CV risk, but treatment with PAP in randomized trials has not been shown to improve CV outcome. Central sleep apnea (CSA) is not usually associated with daytime sleepiness in heart failure or atrial fibrillation and is a marker of increased CV risk, but PAP has been shown to be harmful in 1 randomized trial. The benefits of better phenotyping, targeting of higher-risk patients, and a more personalized approach to therapy are being explored in ongoing trials. (C) 2021 Published by Elsevier on behalf of the American College of Cardiology Foundation

    Electrocardiographic markers in patients with type 2 diabetes and the role of diabetes duration

    Get PDF
    Background: The association between type 2 diabetes and electrocardiographic (ECG) markers are incompletely explored and the dependence on diabetes duration is largely unknown. We aimed to investigate the electrocardiographic (ECG) changes associated with type 2 diabetes over time. Methods: In this cross-sectional study, we matched people with type 2 diabetes 1:1 on sex, age, and body mass index with people without diabetes from the general population. We regressed ECG markers with the presence of diabetes and the duration of clinical diabetes, respectively, adjusted for sex, age, body mass index, smoking, heart rate, diabetes medication, renal function, hypertension, and myocardial infarction. Results: We matched 988 people with type 2 diabetes (332, 34% females) with as many controls. Heart rate was 8 bpm higher (p &lt; 0.001) in people with vs. without type 2 diabetes, but the difference declined with increasing diabetes duration. For most depolarization markers, the difference between people with and without type 2 diabetes increased progressively with diabetes duration. On average, R-wave amplitude was 6 mm lower in lead V5 (p &lt; 0.001), P-wave duration was 5 ms shorter (p &lt; 0.001) and QRS duration was 3 ms (p = 0.03). Among repolarization markers, T-wave amplitude (measured in V5) was lower in patients with type 2 diabetes (1 mm lower, p &lt; 0.001) and the QRS-T angle was 10 degrees wider (p = 0.002). We observed no association between diabetes duration and repolarization markers. Conclusions: Type 2 diabetes was independently associated with electrocardiographic depolarization and repolarization changes. Differences in depolarization markers, but not repolarization markers, increased with increasing diabetes duration.</p

    The great deceiver: a case series of 'double fire' atrioventricular nodal response.

    No full text
    BACKGROUND: The 'double fire' (DF) atrioventricular (AV) nodal response is a rare mechanism of two ventricular electrical activations following a single atrial beat due to dual AV node physiology. DF AV nodal response is often misdiagnosed and may lead to unnecessary invasive procedures. CASE SUMMARY: We describe a series of three cases with distinct clinical manifestations of DF AV nodal response: Patient 1 remained symptomatic after slow pathway modification for common AV nodal re-entry tachycardia. Patient 2 was misdiagnosed as having junctional bigeminy and developed heart failure with reduced left ventricle ejection fraction. Patient 3 was misdiagnosed as having atrial fibrillation (AF) and underwent two pulmonary vein isolation (PVI) procedures, without clinical improvement. All patients underwent an electrophysiological study (EPS) during which DF AV nodal response was confirmed and treated with radiofrequency ablation of the slow pathway. All patients were afterwards relieved from their symptoms. DISCUSSION AND CONCLUSION: DF AV nodal response is a rare electrophysiological phenomenon which can be clinically misinterpreted as other common arrhythmias, such as premature junctional bigeminy or AF and can contribute to tachycardia induced cardiomyopathy. Typical electrocardiogram- and EPS-derived findings can be indicative for DF AV nodal response. DF AV nodal response can be easily and effectively treated by slow pathway ablation

    Interpretation der Photoplethysmographie:Schritt für Schritt

    No full text
    By applying photoplethysmography (PPG), the camera of the mobile phone can be used to remotely assess heart rate and rhythm, which was widely used in conjunction with teleconsultations within the TeleCheck-AF project during the coronavirus disease 2019 (COVID-19) pandemic. Herein, we provide an educational, structured, stepwise practical guide on how to interpret PPG signals. A better understanding of PPG recordings is critical for the implementation of this widely available technology into clinical practice
    corecore