8 research outputs found

    Effects of tyrosine/phenylalanine depletion on electrophysiological correlates of memory in healthy volunteers

    Get PDF
    Dopamine is well known for involvement in reinforcement, motor control and frontal lobe functions, such as attention and memory. Tyrosine/phenylalanine depletion (TPD) lowers dopamine synthesis and can therefore be used as a model to study the effects of low dopamine levels. This is the first study to assess the effect of TPD on memory performance and its electrophysiological correlates. In a double blind placebo (PLA)-controlled crossover design, 17 healthy volunteers (six males, 11 females) aged between 18 and 25 were tested after TPD and PLA. Working memory was assessed using a Sternberg memory scanning task (SMS) and episodic memory using the Visual Verbal Learning Test (VVLT). Simultaneously, event-related potentials (ERPs) were measured. The tyrosine and phenylalanine ratio was significantly reduced after TPD and increased after PLA. Working memory performance was not affected by TPD. However, ERP measures were affected by the treatment, indicating that TPD impaired stimulus processing during working memory performance. Episodic memory was not impaired after TPD. Again, alterations in ERP measures suggested adverse effects of TPD on memory-related processing. These results suggest that dopamine is involved in both working memory and episodic memory-related processing, although the effects are too small to be detected by performance measures

    Higher, faster, stronger: The effect of dynamic stimuli on response preparation and CNV amplitude

    Get PDF
    The contingent negative variation (CNV) is a slow negative shift in the electroencephalogram (EEG), observed during response preparation. To optimalize the CNV paradigm, this study developed a task using dynamic stimuli and next combined this task with a Go/No-go test. In the first experiment, 19 healthy volunteers were subjected to the classic Traffic light (TL) task and the new dynamic Lines task. In the Lines task, response time was faster and CNV amplitude was larger compared to the TL task. In the second experiment, 20 healthy participants were tested on a Go/No-go version of the Lines task. Response times increased as the probability of response requirement decreased. CNV amplitude was larger when probability of response requirement was higher. In conclusion, the dynamic task promotes response preparation. The new tasks may be especially valuable in groups with attention difficulties (i.e. elderly or ADHD patients)

    Cognitive effects of methylphenidate and levodopa in healthy volunteers

    Get PDF
    Our previous study showed enhanced declarative memory consolidation after acute methylphenidate (MPH) administration. The primary aim of the current study was to investigate the duration of this effect. Secondary, the dopaminergic contribution of MPH effects, the electrophysiological correlates of declarative memory, and the specificity of memory enhancing effects of MPH to declarative memory were assessed. Effects of 40mg of MPH on memory performance were compared to 100mg of levodopa (LEV) in a placebo-controlled crossover study with 30 healthy volunteers. Memory performance testing included a word learning test, the Sternberg memory scanning task, a paired associates learning task, and a spatial working memory task. During the word learning test, event-related brain potentials (ERPs) were measured. MPH failed to enhance retention of words at a 30min delay, but it improved 24h delayed memory recall relative to PLA and LEV. Furthermore, during encoding, the P3b and P600 ERP latencies were prolonged and the P600 amplitude was larger after LEV compared to PLA and MPH. MPH speeded response times on the Sternberg Memory Scanning task and improved performance on the Paired Associates Learning task, relative to LEV, but not PLA. Performance on the Spatial working memory task was not affected by the treatments. These findings suggest that MPH and LEV might have opposite effects on memory

    Cognitive effects of methylphenidate in healthy volunteers: a review of single dose studies

    Get PDF
    Methylphenidate (MPH), a stimulant drug with dopamine and noradrenaline reuptake inhibition properties, is mainly prescribed in attention deficit hyperactivity disorder, is increasingly used by the general population, intending to enhance their cognitive function. In this literature review, we aim to answer whether this is effective. We present a novel way to determine the extent to which MPH enhances cognitive performance in a certain domain. Namely, we quantify this by a percentage that reflects the number of studies showing performance enhancing effects of MPH. To evaluate whether the dose-response relationship follows an inverted-U-shaped curve, MPH effects on cognition are also quantified for low, medium and high doses, respectively. The studies reviewed here show that single doses of MPH improve cognitive performance in the healthy population in the domains of working memory (65% of included studies) and speed of processing (48%), and to a lesser extent may also improve verbal learning and memory (31%), attention and vigilance (29%) and reasoning and problem solving (18%), but does not have an effect on visual learning and memory. MPH effects are dose-dependent and the dose-response relationship differs between cognitive domains. MPH use is associated with side effects and other adverse consequences, such as potential abuse. Future studies should focus on MPH specifically to adequately asses its benefits in relation to the risks specific to this drug

    Contingent negative variation as a dopaminergic biomarker: evidence from dose-related effects of methylphenidate

    Get PDF
    RATIONALE: The basal ganglia play an important role in motor control, which is dependent on dopaminergic input. Preparation of a motor response has been associated with dopamine release in the basal ganglia, and response readiness may therefore serve as a pharmacodynamic marker of dopamine activity. METHODS: We measured response readiness using the amplitude of the contingent negative variation (CNV), a slow negative shift in the electroencephalogram. The CNV is evoked in a paradigm in which a warning stimulus (S1) signals the occurrence of the imperative stimulus (S2) 4 s later, to which the participant has to respond. CNV was assessed in healthy volunteers after administration of placebo or 10, 20 or 40 mg of methylphenidate, a catecholamine re-uptake blocker which primarily enhances the synaptic concentration of dopamine and to a lesser extent also noradrenaline. In addition, participants filled out two visual analogue scales measuring subjective ratings of mood and alertness: Profile of Mood States and Bond and Lader. RESULTS: Methylphenidate dose dependently increased CNV amplitude and decreased reaction times. Furthermore, participants reported improved mood, feeling more alert, vigorous and content and less angry and tired after methylphenidate. CONCLUSIONS: These results indicate that dopamine availability increases response readiness as measured by the CNV paradigm. The CNV appears to be a good candidate biomarker for assessing changes in dopaminergic function by treatments that either directly or indirectly target the dopaminergic system
    corecore