670 research outputs found
On the role of galactic magnetic halo in the ultra high energy cosmic rays propagation
The study of propagation of Ultra High Energy Cosmic Rays (UHECR) is a key
step in order to unveil the secret of their origin. Up to now it was considered
only the influence of the galactic and the extragalactic magnetic fields. In
this article we focus our analysis on the influence of the magnetic field of
the galaxies standing between possible UHECR sources and us. Our main approach
is to start from the well known galaxy distribution up to 120 Mpc. We use the
most complete galaxy catalog: the LEDA catalog. Inside a sphere of 120 Mpc
around us, we extract 60130 galaxies with known position. In our simulations we
assign a Halo Dipole magnetic Field (HDF) to each galaxy. The code developed is
able to retro-propagate a charged particle from the arrival points of UHECR
data across our galaxies sample. We present simulations in case of Virgo
cluster and show that there is a non negligible deviation in the case of
protons of eV, even if the value is conservative. Then
special attention is devoted to the AGASA triplet where we find that NGC3998
and NGC3992 could be possible candidates as sources.Comment: Version accepted from ApJ, 5 figure
A 1200 Year Record of Hydrologic Variability in the Sierra Nevada from Sediments in Walker Lake, Nevada
Measurements of the oxygen isotopic composition (δ18O) of the total inorganic carbon (TIC) fraction from cored sediments of Walker Lake, Nevada, were conducted at an average resolution of ∼3 years per sample over the last 1200 years. On the basis of radiocarbon analysis on the total organic carbon (TOC) fraction, a δ18O time series was created to reconstruct changes in hydrologic conditions back to AD 800. The timings of variations in the TIC δ18O record are generally consistent with the tree ring-based Sacramento River flow record spanning AD 869 to 1977, indicating that Walker Lake δ18O contains information about past changes in at least regional hydrologic conditions. Comparison with the δ18O record from Pyramid Lake sediments indicates that both basins have recorded five century-scale oscillations in regional hydrologic conditions since AD 800. Several of these changes in hydrologic conditions appear synchronous with century-scale California Current water temperature changes derived from analysis of sediment cores from the Santa Barbara Basin also attesting to the regional extent of these climatic fluctuations. Nearly synchronous oscillations in the Sierra wetness and the California Current suggest that regional changes in atmospheric circulation may have played an important role in century-scale climate variability over the last millennium
Late Holocene Lake-Level Fluctuations in Walker Lake, Nevada, USA
alker Lake, a hydrologically closed, saline, and alkaline lake, is situated along the western margin of the Great Basin in Nevada of the western United States. Analyses of the magnetic susceptibility (χ), total inorganic carbon (TIC), and oxygen isotopic composition (δ18O) of carbonate sediments including ostracode shells (Limnocythere ceriotuberosa) from Walker Lake allow us to extend the sediment record of lake-level fluctuations back to 2700 years B.P. There are approximately five major stages over the course of the late Holocene hydrologic evolution in Walker Lake: an early lowstand (\u3e 2400 years B.P.), a lake-filling period (∼ 2400 to ∼ 1000 years B.P.), a lake-level lowering period during the Medieval Warm Period (MWP) (∼ 1000 to ∼ 600 years B.P.), a relatively wet period (∼ 600 to ∼ 100 years B.P.), and the anthropogenically induced lake-level lowering period (\u3c 100 years B.P.). The most pronounced lowstand of Walker Lake occurred at ∼ 2400 years B.P., as indicated by the relatively high values of δ18O. This is generally in agreement with the previous lower resolution paleoclimate results from Walker Lake, but contrasts with the sediment records from adjacent Pyramid Lake and Siesta Lake. The pronounced lowstand suggests that the Walker River that fills Walker Lake may have partially diverted into the Carson Sink through the Adrian paleochannel between 2700 to 1400 years B.P
Ultra high energy neutrinos from gamma ray bursts
Protons accelerated to high energies in the relativistic shocks that generate
gamma ray bursts photoproduce pions, and then neutrinos in situ. I show that
ultra high energy neutrinos (> 10^19 eV) are produced during the burst and the
afterglow. A larger flux, also from bursts, is generated via photoproduction
off CMBR photons in flight but is not correlated with currently observable
bursts, appearing as a bright background. Adiabatic/synchrotron losses from
protons/pions/muons are negligible. Temporal and directional coincidences with
bursts detected by satellites can separate correlated neutrinos from the
background.Comment: Adiabatic/synchrotron losses from protons/pions/muons shown to be
negligible. Accepted for publication in Phys. Rev. Letters. RevTe
Dependence of the Energy Spectrum of UHE Cosmic Rays on the Latitude of an Extensive Air Shower Array
Several energy spectra of cosmic rays with energies E_0 \geq 10^17 eV
measured at the Yakutsk EAS, AGASA, Haverah Park, HiRes, Auger, and SUGAR
arrays are considered. It is shown that the fairly good mutual agreement of the
spectrum shapes can be achieved if the energy of each spectrum is multiplied by
a factor K specific for each spectrum. These factors exhibit a pronounced
dependence on the latitude of the above-mentioned arrays.Comment: 4 pages, 4 figure
On the Discovery of the GZK Cut-off
The recent claim of the '5 sigma' observation of the Greisen and Zatzepin and
Kuzmin cut-off by the HiRes group based on their nine years data is a
significant step toward the eventual solution of the one of the most intriguing
questions which has been present in physics for more than forty years. However
the word 'significance' is used in the mentioned paper in the sense which is
not quite obvious. In the present paper we persuade that this claim is a little
premature.Comment: 10 page
Features of Muon Arrival Time Distributions of High Energy EAS at Large Distances From the Shower Axis
In view of the current efforts to extend the KASCADE experiment
(KASCADE-Grande) for observations of Extensive Air Showers (EAS) of primary
energies up to 1 EeV, the features of muon arrival time distributions and their
correlations with other observable EAS quantities have been scrutinised on
basis of high-energy EAS, simulated with the Monte Carlo code CORSIKA and using
in general the QGSJET model as generator. Methodically various correlations of
adequately defined arrival time parameters with other EAS parameters have been
investigated by invoking non-parametric methods for the analysis of
multivariate distributions, studying the classification and misclassification
probabilities of various observable sets. It turns out that adding the arrival
time information and the multiplicity of muons spanning the observed time
distributions has distinct effects improving the mass discrimination. A further
outcome of the studies is the feature that for the considered ranges of primary
energies and of distances from the shower axis the discrimination power of
global arrival time distributions referring to the arrival time of the shower
core is only marginally enhanced as compared to local distributions referring
to the arrival of the locally first muon.Comment: 24 pages, Journal Physics G accepte
The neutron 'thunder' accompanying the extensive air shower
Simulations show that neutrons are the most abundant component among
extensive air shower hadrons. However, multiple neutrons which appear with long
delays in neutron monitors nearby the EAS core ('neutron thunder') are mostly
not the neutrons of the shower, but have a secondary origin. The bulk of them
is produced by high energy EAS hadrons hitting the monitors. The delays are due
to the termalization and diffusion of neutrons in the moderator and reflector
of the monitor accompanied by the production of secondary gamma-quanta. This
conclusion raises the important problem of the interaction of EAS with the
ground, the stuff of the detectors and their environment since they have often
hydrogen containing materials like polyethilene in neutron monitors. Such
interaction can give an additional contribution to the signal in the EAS
detectors. It can be particularly important for the signals from scintillator
or water tank detectors at km-long distances from the EAS core where neutrons
of the shower become the dominant component after a few mcsec behind the EAS
front.Comment: 12 pages, 4 figures, accepted by J.Phys.G: Nucl.Part.Phy
Search for Sub-TeV Gamma Rays Coincident with BATSE Gamma Ray Bursts
Project GRAND is a 100m x 100m air shower array of proportional wire chambers
(PWCs). There are 64 stations each with eight 1.29 m^2 PWC planes arranged in
four orthogonal pairs placed vertically above one another to geometrically
measure the angles of charged secondaries. A steel plate above the bottom pair
of PWCs differentiates muons (which pass undeflected through the steel) from
non-penetrating particles. FLUKA Monte Carlo studies show that a TeV gamma ray
striking the atmosphere at normal incidence produces 0.23 muons which reach
ground level where their angles and identities are measured. Thus,
paradoxically, secondary muons are used as a signature for gamma ray primaries.
The data are examined for possible angular and time coincidences with eight
gamma ray bursts (GRBs) detected by BATSE. Seven of the GRBs were selected
because of their good acceptance by GRAND and high BATSE Fluence. The eighth
GRB was added due to its possible coincident detection by Milagrito. For each
of the eight candidate GRBs, the number of excess counts during the BATSE T90
time interval and within plus or minus five degrees of BATSE's direction was
obtained. The highest statistical significance reported in this paper (2.7
sigma) is for the event that was predicted to be the most likely to be observed
(GRB 971110).Comment: To be presented at the XXVIII International Cosmic Ray Conference,
Tsukuba, Japa
- …