3 research outputs found

    Stem Cell Therapy for Alzheimer’s Disease: A Scoping Review for 2017–2022

    No full text
    Alzheimer’s disease (AD) has been a major causal factor for mortality among elders around the world. The treatments for AD, however, are still in the stage of development. Stem cell therapy, compared to drug therapies and many other therapeutic options, has many advantages and is very promising in the future. There are four major types of stem cells used in AD therapy: neural stem cells, mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells. All of them have applications in the treatments, either at the (1) cellular level, in an (2) animal model, or at the (3) clinical level. In general, many more types of stem cells were studied on the cellular level and animal model, than the clinical level. We suggest for future studies to increase research on various types of stem cells and include cross-disciplinary research with other diseases. In the future, there could also be improvements in the timeliness of research and individualization for stem cell therapies for AD

    Associations of the circulating levels of cytokines with risk of amyotrophic lateral sclerosis: a Mendelian randomization study

    No full text
    Abstract Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that is accompanied by muscle weakness and muscle atrophy, typically resulting in death within 3–5 years from the disease occurrence. Though the cause of ALS remains unclear, increasing evidence has suggested that inflammation is involved in the pathogenesis of ALS. Thus, we performed two-sample Mendelian randomization (MR) analyses to estimate the associations of circulating levels of cytokines and growth factors with the risk of ALS. Methods Genetic instrumental variables for circulating cytokines and growth factors were identified from a genome-wide association study (GWAS) of 8293 European participants. Summary statistics of ALS were obtained from a GWAS including 20,806 ALS cases and 59,804 controls of European ancestry. We used the inverse-variance weighted (IVW) method as the primary analysis. To test the robustness of our results, we further performed the simple-median method, weighted-median method, MR-Egger regression, and MR pleiotropy residual sum and outlier test. Finally, a reverse MR analysis was performed to assess the possibility of reverse causation between ALS and the cytokines that we identified. Results After Bonferroni correction, genetically predicted circulating level of basic fibroblast growth factor (FGF-basic) was suggestively associated with a lower risk of ALS [odds ratio (OR): 0.74, 95% confidence interval (95% CI): 0.60–0.92, P = 0.007]. We also observed suggestive evidence that interferon gamma-induced protein 10 (IP-10) was associated with a 10% higher risk of ALS (OR: 1.10, 95% CI: 1.03–1.17, P = 0.005) in the primary study. The results of sensitivity analyses were consistent. Conclusions Our systematic MR analyses provided suggestive evidence to support causal associations of circulating FGF-basic and IP-10 with the risk of ALS. More studies are warranted to explore how these cytokines may affect the development of ALS

    Genetic evidence strengthens the bidirectional connection between gut microbiota and periodontitis: insights from a two-sample Mendelian randomization study

    No full text
    Abstract Background Recent research has established the correlation between gut microbiota and periodontitis via oral-gut axis. Intestinal dysbiosis may play a pivotal bridging role in extra-oral inflammatory comorbidities caused by periodontitis. However, it is unclear whether the link is merely correlative or orchestrated by causative mechanistic interactions. This two-sample Mendelian randomization (MR) study was performed to evaluate the potential bidirectional causal relationships between gut microbiota and periodontitis. Materials and Methods A two-sample MR analysis was performed using summary statistics from genome-wide association studies (GWAS) for gut microbiota (n = 18,340) and periodontitis (cases = 12,251; controls = 22,845). The inverse-variance weighted (IVW) method was used for the primary analysis, and we employed sensitivity analyses to assess the robustness of the main results. The PhenoScanner database was then searched for pleiotropy SNPs associated with potential confounders. In order to identify the possibly influential SNPs, we further conducted the leave-one-out analysis. Finally, a reverse MR analysis was performed to evaluate the possibility of links between periodontitis and genetically predicted gut microbiota alternation. Results 2,699 single nucleotide polymorphisms (SNPs) associated with 196 microbiota genera were selected as instrumental variables (IVs). IVW method suggested that order Enterobacteriales (OR: 1.35, 95% CI 1.10–1.66), family Bacteroidales S24.7group (OR: 1.22, 95% CI 1.05–1.41), genus Lachnospiraceae UCG008 (OR: 1.16, 95% CI 1.03–1.31), genus Prevotella 7 (OR: 1.11, 95% CI 1.01–1.23), and order Pasteurellales (OR: 1.12, 95% CI 1.00–1.26) may be associated with a higher risk of periodontitis, while genus Ruminiclostridium 6 may be linked to a lower risk (OR: 0.82, 95% CI 0.70–0.95). The sensitivity and heterogeneity analyses yielded no indication of horizontal pleiotropy or heterogeneity. Only the association between order Enterobacteriales and the likelihood of periodontitis remained consistent across all alternative MR approaches. In the reverse MR analysis, four microbiota genera were genetically predicted to be down-regulated in periodontitis, whereas two were predicted to be up-regulated. Conclusions The present MR analysis demonstrated the potential bidirectional causal relationships between gut microbiota and periodontitis. Our research provided fresh insights for the prevention and management of periodontitis. Future research is required to support the finding of our current study
    corecore