146 research outputs found
The multi-peak adaptive landscape of crocodylomorph body size evolution
Background: Little is known about the long-term patterns of body size evolution in Crocodylomorpha, the > 200-million-year-old group that includes living crocodylians and their extinct relatives. Extant crocodylians are mostly large-bodied (3–7 m) predators. However, extinct crocodylomorphs exhibit a wider range of phenotypes, and many of the earliest taxa were much smaller (
Results: Crocodylomorphs reached an early peak in body size disparity during the Late Jurassic, and underwent an essentially continual decline since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted to our data (including both uniform and non-uniform), indicating that the macroevolutionary dynamics of crocodylomorph body size are better described within the concept of an adaptive landscape, with most body size variation emerging after shifts to new macroevolutionary regimes (analogous to adaptive zones). We did not find support for a consistent evolutionary trend towards larger sizes among lineages (i.e., Cope’s rule), or strong correlations of body size with climate. Instead, the intermediate to large body sizes of some crocodylomorphs are better explained by group-specific adaptations. In particular, the evolution of a more aquatic lifestyle (especially marine) correlates with increases in average body size, though not without exceptions.
Conclusions: Shifts between macroevolutionary regimes provide a better explanation of crocodylomorph body size evolution on large phylogenetic and temporal scales, suggesting a central role for lineage-specific adaptations rather than climatic forcing. Shifts leading to larger body sizes occurred in most aquatic and semi-aquatic groups. This, combined with extinctions of groups occupying smaller body size regimes (particularly during the Late Cretaceous and Cenozoic), gave rise to the upward-shifted body size distribution of extant crocodylomorphs compared to their smaller-bodied terrestrial ancestors.</p
Facies Distribution, Sequence Stratigraphy, Chemostratigraphy, and Diagenesis of the Middle-Late Triassic Al Aziziyah Formation, Jifarah Basin, NW Libya
This study presents the depositional facies, sequence stratigraphy, chemostratigraphy and diagenetic evolution of the Middle-Late Triassic Al Aziziyah Formation, Jifarah Basin northwest Libya. Eight measured sections were sampled and analyzed. High-resolution stable carbon isotope data were integrated with an outcrop-based sequence stratigraphic framework, to build the stratigraphic correlation, and to provide better age control of the Al Aziziyah Formation using thin section petrography, cathodoluminescence (CL) microscopy, stable isotope, and trace element analyses.
The Al Aziziyah Formation was deposited on a gently sloping carbonate ramp and consists of gray limestone, dolomite, and dolomitic limestone interbedded with rare shale. The Al Aziziyah Formation is predominantly a 2nd-order sequence (5-20 m.y. duration), with shallow marine sandstone and peritidal carbonate facies restricted to southernmost sections. Seven 3rd-order sequences were identified (S1-S7) within the type section. North of the Ghryan Dome section are three mainly subtidal sequences (S8-S10) that do not correlate to the south. Shallowing upward trends define 4th-5th order parasequences, but correlating these parasequences between sections is difficult due to unconformities.
The carbon isotope correlation between the Ghryan Dome and Kaf Bates sections indicates five units of δ13C depletion and enrichment (sequences 3-7). The enrichment of δ13C values in certain intervals most likely reflects local withdrawal of 12C from the ocean due to increased productivity, as indicated by the deposition of organic-rich sediment, and/or whole rock sediment composed of calcite admixed with aragonite. The depletion of δ13C is clearly associated with exposure surfaces and with shallow carbonate facies. Heavier δ18O values are related to evaporetic enrichment of 18O, whereas depletion of δ18O is related to diagenesis due to freshwater input.
Al Aziziyah Formation diagenetic events indicate: 1) initial meteoric and shallow burial; 2) three types of dolomite D1, D2 and D3 were most likely formed by microbial, seepage reflux and burial processes, respectively; and 3) diagenetic cements cannot be related to the arid, mega-monsoonal climate of the Triassic and most likely formed subsequently in a humid, meteoric setting
Surface chemistry of colloidal silver surface plasmon damping by chemisorbed iodide, hydrosulfide SH , and phenylthiolate
The optical changes that occur upon the addition of iodide, iodine, and colloidal silver iodide to a colloidal solution of silver particles 6 nm mean diameter were monitored spectrophotometrically. For small concentrations of added I and I2 formation of less than a monolayer of adsorbate , the changes in the shape of the silver plasmon absorption band are practically identical. Silver iodide particles in contact with silver particles affect the plasmon band only slightly. It is concluded that the AgI molecules formed by the surface oxidation of the Ag particles by iodine do not possess the properties of bulk AgI. The structure Ag delta I is proposed as in the case of adsorbed iodide. With increasing amounts of AgI on the silver particles, the optical properties of bulk AgI appear. The coadsorption of I and SH was also investigated. SH is adsorbed more strongly than I . In fact, SH displaces I even at coverages smaller than one monolayer, which is explained by an electronic mechanism SH donating electron density into the silver particle to shift the adsorption desorption equilibrium of I . The coadsorption of SH and C6H5S was also investigated. The two anions are about equally strongly bound to the silver surface. I , SH , and C6H5S ions lose their CTTS absorption bands when they are adsorbe
- …