65 research outputs found

    Effect of crystal plane orientation on the friction-induced nanofabrication on monocrystalline silicon

    Get PDF
    Although monocrystalline silicon reveals strong anisotropic properties on various crystal planes, the friction-induced nanofabrication can be successfully realized on Si(100), Si(110), and Si(111) surfaces. Under the same loading condition, the friction-induced hillock produced on Si(100) surface is the highest, while that produced on Si(111) surface is the lowest. The formation mechanism of hillocks on various silicon crystal planes can be ascribed to the structural deformation of crystal matrix during nanoscratching. The silicon crystal plane with lower elastic modulus can lead to larger pressed volume during sliding, facilitating more deformation in silicon matrix and higher hillock. Meanwhile, the structures of Si-Si bonds on various silicon crystal planes show a strong effect on the hillock formation. High density of dangling bonds can cause much instability of silicon surface during tip disturbing, which results in the formation of more amorphous silicon and high hillock during the friction process. The results will shed new light on nanofabrication of monocrystalline silicon

    Maskless micro/nanofabrication on GaAs surface by friction-induced selective etching

    Get PDF
    In the present study, a friction-induced selective etching method was developed to produce nanostructures on GaAs surface. Without any resist mask, the nanofabrication can be achieved by scratching and post-etching in sulfuric acid solution. The effects of the applied normal load and etching period on the formation of the nanostructure were studied. Results showed that the height of the nanostructure increased with the normal load or the etching period. XPS and Raman detection demonstrated that residual compressive stress and lattice densification were probably the main reason for selective etching, which eventually led to the protrusive nanostructures from the scratched area on the GaAs surface. Through a homemade multi-probe instrument, the capability of this fabrication method was demonstrated by producing various nanostructures on the GaAs surface, such as linear array, intersecting parallel, surface mesas, and special letters. In summary, the proposed method provided a straightforward and more maneuverable micro/nanofabrication method on the GaAs surface

    Friction-induced nanofabrication method to produce protrusive nanostructures on quartz

    Get PDF
    In this paper, a new friction-induced nanofabrication method is presented to fabricate protrusive nanostructures on quartz surfaces through scratching a diamond tip under given normal loads. The nanostructures, such as nanodots, nanolines, surface mesas and nanowords, can be produced on the target surface by programming the tip traces according to the demanded patterns. The height of these nanostructures increases with the increase of the number of scratching cycles or the normal load. Transmission electron microscope observations indicated that the lattice distortion and dislocations induced by the mechanical interaction may have played a dominating role in the formation of the protrusive nanostructures on quartz surfaces. Further analysis reveals that during scratching, a contact pressure ranged from 0.4Py to Py (Py is the critical yield pressure of quartz) is apt to produce protuberant nanostructures on quartz under the given experimental conditions. Finally, it is of great interest to find that the protrusive nanostructures can be selectively dissolved in 20% KOH solution. Since the nanowords can be easily 'written' by friction-induced fabrication and 'erased' through selective etching on a quartz surface, this friction-induced method opens up new opportunities for future nanofabrication

    Fabrication mechanism of friction-induced selective etching on Si(100) surface

    Get PDF
    As a maskless nanofabrication technique, friction-induced selective etching can easily produce nanopatterns on a Si(100) surface. Experimental results indicated that the height of the nanopatterns increased with the KOH etching time, while their width increased with the scratching load. It has also found that a contact pressure of 6.3 GPa is enough to fabricate a mask layer on the Si(100) surface. To understand the mechanism involved, the cross-sectional microstructure of a scratched area was examined, and the mask ability of the tip-disturbed silicon layer was studied. Transmission electron microscope observation and scanning Auger nanoprobe analysis suggested that the scratched area was covered by a thin superficial oxidation layer followed by a thick distorted (amorphous and deformed) layer in the subsurface. After the surface oxidation layer was removed by HF etching, the residual amorphous and deformed silicon layer on the scratched area can still serve as an etching mask in KOH solution. The results may help to develop a low-destructive, low-cost, and flexible nanofabrication technique suitable for machining of micro-mold and prototype fabrication in micro-systems

    Revealing silicon crystal defects by conductive atomic force microscope

    Get PDF
    The machining and polishing of silicon can damage its surface. Therefore, the investigation of the electric performance of the processed surface is of paramount importance for understanding and improving the utilization of silicon components with nanoscale crystal defects. In this study, conductivity of nanoscratches on the silicon surface was investigated using a conductive atomic force microscope. Compared to the original silicon surface (without any treatment), electrical breakover at low bias voltage could be detected on the mechanically scratched area of the silicon surface with crystal defects, and the current increased with the voltage. In contrast, no obvious current was found on the defect-free scratch created by tribochemical removal. The conductivity could also be observed on a friction-induced protrusive hillock created at high speed but not on a hillock created at low speed that is constructed by amorphous silicon. Further analysis showed that lattice distortions could facilitate easy electron flow and contributed significantly to the conductivity of a mechanical scratch on the silicon surface; however, the amorphous layer hardly contributed to the conductivity, which was also supported by high resolution transmission electron microscope analysis. As a result, the relationship between the electrical performance and microstructures was experimentally established. These findings shed new light on the subtle mechanism of defectdependent conductivity and also provide a rapid and nondestructive method for detecting surface defects

    Investigation of Humidity-Dependent Capillary Force

    No full text

    Precision-improving manufacturing produces ordered ultra-fine grained surface layer of tungsten heavy alloy through ultrasonic elliptical vibration cutting

    No full text
    High-precision and ultra-fine grained surface of tungsten heavy alloy exhibits superior service performance that is useful for many applications and shows promises for use as key parts in nuclear protection and precision instruments. The present study concentrated on a kind of precision-improving ultrasonic elliptic vibration cutting approaches, which fabricated nanometer-level surface roughness, inhibited subsurface damages evolution, and formed continuous ultra-fine grained layer microstructure. The surface morphologies have been characterized by ultra-depth three dimensional microscope and white light interferometer. Excellent machined surface quality was achieved under ultrasonic elliptic vibration cutting condition, and an ideal surface roughness of Sa = 70.7 nm was obtained. Microstructural alteration studied using EBSD technique and TEM observation confirmed the generation of ultra-fine grained structure. Surface grain size has been reduced from 50 ∼ 100 μm to 50 ∼ 300 nm without cracks and other micro-damages. Research demonstrated that surface energy accumulation and dislocations clustering induced by high-strain rate diamond tool impact provided the primary driving force of ductile-mode removal and grain recrystallization. A dislocation density-based simulation model was carried out to complement the static experimental investigations. The present work on surface formation and microstructural evolution identified that ultrasonic elliptical vibration machining has potential to deliver improved tungsten-based alloys service performance

    AFM probe for measuring ∼10−5 ultra-low friction coefficient: Design and application

    No full text
    Abstract Superlubricity provides a novel approach to addressing friction and wear issues in mechanical systems. However, little is known regarding improving the atomic force microscope (AFM) friction coefficient measurement resolution. Accordingly, this study established the theoretical formula for the AFM friction coefficient measurement and deduced the measurement resolution. Then, the formula was applied to the AFM probe with a rectangular cross-section cantilever. The measurement resolution is associated with the dimensional properties of the AFM probe, the mechanical properties of the cantilever material, the properties of the position-sensitive detector (PSD), and probably the anti-vibration performance of the AFM. It is feasible to make the cantilever as short as possible and the tip as high as possible to improve the measurement resolution. An AFM probe for measuring an ultra-low friction coefficient was designed and fabricated. The cantilever’s length, width, and thickness are 50, 35, and 0.6 µm, respectively. The tip height is 23 µm. The measurement resolution can reach 7.1×10−6 under the maximum normal force. Moreover, the AFM probe was applied to measure the superlubricity between graphene layers. The friction coefficient is 0.00139 under 853.08 nN. This work provides a promising method for measuring a ∼10−5 friction coefficient of superlubricity

    Effect of phase transition on the unusual microwear behavior of superelastic niti sma

    No full text
    This paper focuses on the microwear behavior of NiTi and it is organized as follows. In section 2, the materials and testing methods are described. In section 3, the temperature dependent constitutive relations of the material during loading which involves both stress-induced phase transition and plasticity are first characterized. Detailed experimental results for the wear performance and hardness of the material measured at different temperatures are reported. The observations are analyzed in terms of the intrinsic temperature dependent constitutive law of the material, where the role of phase transition and its interaction with plasticity in the observed unusual wear performance is emphasized. The results are farther quantified in a simple contact model for indentation and wear. The final conclusions are given in section 4
    corecore