11 research outputs found

    The relationship between labial soft tissue changes and jumping spaces after immediate implant placement and restoration in the anterior maxilla: A prospective study

    Get PDF
    Oral implants have been increasingly used in the treatment of edentulous patients or those with dentition defects due to reliable treatment procedure and favorable long-term prognosis. We investigated the changes of labial soft tissue contours with different jumping spaces after immediate implant placement and restoration (IIPR) in the maxillary esthetic area and also provided a long-term stability measurement for the changing trend of soft tissue contour. All patients had been separated into three groups based on the jumping space: group A (horizontal defect dimension [HDD] 2 mm), group B (2 mm 3 mm) and the digital impressions were obtained in the first, third, and sixth month after the operation. The changes of gingival mucosa levels, the average thickness of soft tissue contour volume, and the linear change of submarginal level decreased gradually across the three groups, with the largest change of submarginal level being at 5mm. The size of the jumping space was moderately negatively correlated with the level and average thickness of gingival mucosa and the linear changes of 3 mm and 5 mm under gingival margin, while there was no significant correlation with pink esthetic score (PES) and the linear change of the 1 mm under the gingival margin. Generally, IIPR of upper anterior teeth can achieve esthetic satisfaction, and the level of soft tissue around the implant can be well preserved

    Comparative Metaproteomic Analysis on Consecutively Rehmannia glutinosa-Monocultured Rhizosphere Soil

    Get PDF
    National Natural Science Foundation of China [30772729, 30671220, 31070403]; Natural Science Foundation of Fujian province, China [2008J0051]Background: The consecutive monoculture for most of medicinal plants, such as Rehmannia glutinosa, results in a significant reduction in the yield and quality. There is an urgent need to study for the sustainable development of Chinese herbaceous medicine. Methodology/Principal Findings: Comparative metaproteomics of rhizosphere soil was developed and used to analyze the underlying mechanism of the consecutive monoculture problems of R. glutinosa. The 2D-gel patterns of protein spots for the soil samples showed a strong matrix dependency. Among the spots, 103 spots with high resolution and repeatability were randomly selected and successfully identified by MALDI TOF-TOF MS for a rhizosphere soil metaproteomic profile analysis. These proteins originating from plants and microorganisms play important roles in nutrient cycles and energy flow in rhizospheric soil ecosystem. They function in protein, nucleotide and secondary metabolisms, signal transduction and resistance. Comparative metaproteomics analysis revealed 33 differentially expressed protein spots in rhizosphere soil in response to increasing years of monoculture. Among them, plant proteins related to carbon and nitrogen metabolism and stress response, were mostly up-regulated except a down-regulated protein (glutathione S-transferase) involving detoxification. The phenylalanine ammonia-lyase was believed to participate in the phenylpropanoid metabolism as shown with a considerable increase in total phenolic acid content with increasing years of monoculture. Microbial proteins related to protein metabolism and cell wall biosynthesis, were up-regulated except a down-regulated protein (geranylgeranyl pyrophosphate synthase) functioning in diterpenoid synthesis. The results suggest that the consecutive monoculture of R. glutinosa changes the soil microbial ecology due to the exudates accumulation, as a result, the nutrient cycles are affected, leading to the retardation of plant growth and development. Conclusions/Significance: Our results demonstrated the interactions among plant, soil and microflora in the proteomic level are crucial for the productivity and quality of R. glutinosa in consecutive monoculture system

    Delaunay meshes simplification with multi‐objective optimisation and fine tuning

    Full text link
    Abstract 3D meshes simplification plays an important role in many industrial domains. The two goals of Delaunay mesh simplification are maintaining high geometric fidelity and reducing mesh complexity. However, they are conflicting and cannot solved by gradient. Such limitation prevents existing Delaunay mesh simplification to obtain a small enough number of vertices and promising fidelity at the same time. To address these issues, this paper proposes an evolutionary multi‐objective approach for Delaunay mesh simplification. Firstly, the authors replace the previous fixed error‐bound threshold by the designed adaptive segment‐specific thresholds. Secondly, a constrained simplification is performed through a series of edge collapses that satisfy both Delaunay and error constraints. Next, the non‐dominated sorting genetic algorithm II (NSGA‐II) is employed to solve the multi‐objective problem to search for the optimal trade‐off threshold sequences. Finally, a fine‐tuning method is designed to further enhance the geometric fidelity of the simplified mesh. Experimental results demonstrate that the authors’ method consistently achieves a satisfactory balance between the approximation error and number of vertices, outperforming existing state‐of‐the‐art methods

    Leachability of Fast-Growing Wood Impregnated with Low Concentrations of Furfuryl Alcohol

    Full text link
    Furfurylation can effectively improve the quality of fast-growing wood, but its leachability is unclear. In this study, fast-growing poplar (Populus sp.) and Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) were impregnated with low concentrations of 5%–20% furfuryl alcohol (FA), and the chemical and microscopic changes during leaching tests were analyzed by UV spectra and confocal laser scanning microscopy (CLSM). The results show that FA impregnation can regulate the weight percentage gain, but its effectiveness in regulating the cell wall bulking coefficient decreased as the impregnation concentration was increased. Impregnation with 15% and 20% FA showed no significant difference in the effect on volume swelling efficiency. The inverse relationship between the concentration of FA and the leaching rate was demonstrated by leaching tests, UV spectra, and CLSM. Notably, the leaching rate of poplar and Chinese fir wood was more than 30% when impregnated with 5% FA. Although the entirety of the furfuryl alcohol was deposited in the cell wall when impregnated with low concentrations of FA, the binding was not stable. The weight percentage gain of furfurylated Chinese fir was greater than that of poplar, but its leaching rate was lower, indicating that the cured furfuryl alcohol resin in poplar was not as stable as that in Chinese fir. Therefore, differences in tree species should be considered in low-concentration FA impregnation, as the improvement effect of concentrations below 10% on the properties of fast-growing wood is weak and the leaching rate of FA is significant
    corecore