47 research outputs found
Tkachenko waves, glitches and precession in neutron star
Here I discuss possible relations between free precession of neutron stars,
Tkachenko waves inside them and glitches. I note that the proposed precession
period of the isolated neutron star RX J0720.4-3125 (Haberl et al. 2006) is
consistent with the period of Tkachenko waves for the spin period 8.4s. Based
on a possible observation of a glitch in RX J0720.4-3125 (van Kerkwijk et al.
2007), I propose a simple model, in which long period precession is powered by
Tkachenko waves generated by a glitch. The period of free precession,
determined by a NS oblateness, should be equal to the standing Tkachenko wave
period for effective energy transfer from the standing wave to the precession
motion. A similar scenario can be applicable also in the case of the PSR
B1828-11.Comment: 6 pages, no figures, accepted to Ap&S
Tunable variation of optical properties of polymer capped gold nanoparticles
Optical properties of polymer capped gold nanoparticles of various sizes
(diameter 3-6 nm) have been studied. We present a new scheme to extract size
dependent variation of total dielectric function of gold nanoparticles from
measured UV-Vis absorption data. The new scheme can also be used, in principle,
for other related systems as well. We show how quantum effect, surface atomic
co - ordination and polymer - nanoparticle interface morphology leads to a
systematic variation in inter band part of the dielectric function of gold
nanoparticles, obtained from the analysis using our new scheme. Careful
analysis enables identification of the possible changes to the electronic band
structure in such nanoparticles.Comment: 13 pages,7 figures, 1 tabl
Neutron Star Superfluidity, Dynamics and Precession
Basic rotational and magnetic properties of neutron superfluids and proton
superconductors in neutron stars are reviewed. The modes of precession of the
neutron superfluid are discussed in detail. We emphasize that at finite
temperature, pinning of superfluid vortices does not offer any constraint on
the precession. Any pinning energies can be surmounted by thermal activation
and there exists a dynamical steady state in which the superfluid follows the
precession of the crust at a small lag angle between the crust and superfluid
rotation velocity vectors. At this small lag the system is far from the
critical conditions for unpinning, even if the observed precession of the crust
may entail a large angle between the figure axis and the crust's rotation
velocity vector. We conclude that if long period modulations of pulse arrival
times and pulse shapes observed in a pulsar like the PSR B1828-11 are due to
the precession of the neutron star, this does not have any binding implications
about the existence of pinning by flux lines or the existence of Type II
superconductivity in the neutron star.Comment: 21 pages, one figure, to appear in the Proceedings of the NATO-ASI
"The Electromagnetic Spectrum of Neutron Stars" held in Marmaris, Turkey,
June 2004, eds. A. Baykal, S.K. Yerli, C. Inam and S. Grebene
Structure Formation, Melting, and the Optical Properties of Gold/DNA Nanocomposites: Effects of Relaxation Time
We present a model for structure formation, melting, and optical properties
of gold/DNA nanocomposites. These composites consist of a collection of gold
nanoparticles (of radius 50 nm or less) which are bound together by links made
up of DNA strands. In our structural model, the nanocomposite forms from a
series of Monte Carlo steps, each involving reaction-limited cluster-cluster
aggregation (RLCA) followed by dehybridization of the DNA links. These links
form with a probability which depends on temperature and particle
radius . The final structure depends on the number of monomers (i. e. gold
nanoparticles) , , and the relaxation time. At low temperature, the
model results in an RLCA cluster. But after a long enough relaxation time, the
nanocomposite reduces to a compact, non-fractal cluster. We calculate the
optical properties of the resulting aggregates using the Discrete Dipole
Approximation. Despite the restructuring, the melting transition (as seen in
the extinction coefficient at wavelength 520 nm) remains sharp, and the melting
temperature increases with increasing as found in our previous
percolation model. However, restructuring increases the corresponding link
fraction at melting to a value well above the percolation threshold. Our
calculated extinction cross section agrees qualitatively with experiments on
gold/DNA composites. It also shows a characteristic ``rebound effect,''
resulting from incomplete relaxation, which has also been seen in some
experiments. We discuss briefly how our results relate to a possible sol-gel
transition in these aggregates.Comment: 12 pages, 10 figure
Relativistic superfluid models for rotating neutron stars
This article starts by providing an introductory overview of the theoretical
mechanics of rotating neutron stars as developped to account for the frequency
variations, and particularly the discontinuous glitches, observed in pulsars.
The theory suggests, and the observations seem to confirm, that an essential
role is played by the interaction between the solid crust and inner layers
whose superfluid nature allows them to rotate independently. However many
significant details remain to be clarified, even in much studied cases such as
the Crab and Vela. The second part of this article is more technical,
concentrating on just one of the many physical aspects that needs further
development, namely the provision of a satisfactorily relativistic (local but
not microscopic) treatment of the effects of the neutron superfluidity that is
involved.Comment: 42 pages LateX. Contribution to Physics of Neutron Star Interiors,
ed. D. Blasche, N.K. Glendenning, A. Sedrakian (ECT workshop, Trento, June
2000
Diversity of ferns and lycophytes in Brazil
Abstract This compilation of ferns and lycophytes in Brazil is an update of the one published in 2010 in Catálogo de Plantas e Fungos do Brasil. The methodology consisted in collecting data from regional checklists, taxonomic revisions, and selected databases. Invited specialists improved the list accessing a website housed at the Jardim Botânico do Rio de Janeiro. The results show 1,253 species: 1,111 of ferns and 142 of lycophytes. This number is 6.5% higher than the previous one (1,176 spp.). The percentage of endemic species decreased from 38.2% to 36.7%. We recognized 36 families and 133 genera (vs. 33 families, 121 genera in 2010). The 10 most diverse families are Pteridaceae (196 spp.), Dryopteridaceae (179), Polypodiaceae (164), Hymenophyllaceae (90), Thelypteridaceae (86), Aspleniaceae (78), Lycopodiaceae (64), Selaginellaceae (55), Anemiaceae (51), and Cyatheaceae (45). The three most diverse genera are still Elaphoglossum (87 spp.), Thelypteris (85), and Asplenium (74). The richest phytogeographic domain continues to be in the Atlantic Rainforest with 883 species which also has the largest number of endemic and threatened species, followed by the Amazon Rainforest (503), Cerrado (269), Pantanal (30), Caatinga (26), and Pampa (eight). Minas Gerais remains as the richest state (657 spp. vs. 580 in 2010)