19 research outputs found

    ReCo: Region-Controlled Text-to-Image Generation

    Full text link
    Recently, large-scale text-to-image (T2I) models have shown impressive performance in generating high-fidelity images, but with limited controllability, e.g., precisely specifying the content in a specific region with a free-form text description. In this paper, we propose an effective technique for such regional control in T2I generation. We augment T2I models' inputs with an extra set of position tokens, which represent the quantized spatial coordinates. Each region is specified by four position tokens to represent the top-left and bottom-right corners, followed by an open-ended natural language regional description. Then, we fine-tune a pre-trained T2I model with such new input interface. Our model, dubbed as ReCo (Region-Controlled T2I), enables the region control for arbitrary objects described by open-ended regional texts rather than by object labels from a constrained category set. Empirically, ReCo achieves better image quality than the T2I model strengthened by positional words (FID: 8.82->7.36, SceneFID: 15.54->6.51 on COCO), together with objects being more accurately placed, amounting to a 20.40% region classification accuracy improvement on COCO. Furthermore, we demonstrate that ReCo can better control the object count, spatial relationship, and region attributes such as color/size, with the free-form regional description. Human evaluation on PaintSkill shows that ReCo is +19.28% and +17.21% more accurate in generating images with correct object count and spatial relationship than the T2I model

    Alterations in brain structure and function associated with pediatric growth hormone deficiency: A multi-modal magnetic resonance imaging study

    Get PDF
    IntroductionPediatric growth hormone deficiency (GHD) is a disease resulting from impaired growth hormone/insulin-like growth factor-1 (IGF-1) axis but the effects of GHD on children’s cognitive function, brain structure and brain function were not yet fully illustrated.MethodsFull Wechsler Intelligence Scales for Children, structural imaging, diffusion tensor imaging, and resting-state functional magnetic resonance imaging were assessed in 11 children with GHD and 10 matched healthy controls.Results(1) The GHD group showed moderate cognitive impairment, and a positive correlation existed between IGF-1 levels and cognitive indices. (2) Mean diffusivity was significantly increased in both corticospinal tracts in GHD group. (3) There were significant positive correlations between IGF-1 levels and volume metrics of left thalamus, left pallidum and right putamen but a negative correlation between IGF-1 levels and cortical thickness of the occipital lobe. And IGF-1 levels negatively correlated with fractional anisotropy in the superior longitudinal fasciculus and right corticospinal tract. (4) Regional homogeneity (ReHo) in the left hippocampus/parahippocampal gyrus was negatively correlated with IGF-1 levels; the amplitude of low-frequency fluctuation (ALFF) and ReHo in the paracentral lobe, postcentral gyrus and precentral gyrus were also negatively correlated with IGF-1 levels, in which region ALFF fully mediates the effect of IGF-1 on working memory index.ConclusionMultiple subcortical, cortical structures, and regional neural activities might be influenced by serum IGF-1 levels. Thereinto, ALFF in the paracentral lobe, postcentral gyrus and precentral gyrus fully mediates the effect of IGF-1 on the working memory index

    Research on Connection and Function Reliability of the Oil&Gas Pipeline System

    No full text
    Pipeline transportation is the optimal way for energy delivery in terms of safety, efficiency and environmental protection. Because of the complexity of pipeline external system including geological hazards, social and cultural influence, it is a great challenge to operate the pipeline safely and reliable. Therefore, the pipeline reliability becomes an important issue. Based on the classical reliability theory, the analysis of pipeline system is carried out, then the reliability model of the pipeline system is built, and the calculation is addressed thereafter. Further the connection and function reliability model is applied to a practical active pipeline system, with the use of the proposed methodology of the pipeline system; the connection reliability and function reliability are obtained. This paper firstly presented to considerate the connection and function reliability separately and obtain significant contribution to establish the mathematical reliability model of pipeline system, hence provide fundamental groundwork for the pipeline reliability research in the future

    Research on Connection and Function Reliability of the Oil&Gas Pipeline System

    No full text
    Pipeline transportation is the optimal way for energy delivery in terms of safety, efficiency and environmental protection. Because of the complexity of pipeline external system including geological hazards, social and cultural influence, it is a great challenge to operate the pipeline safely and reliable. Therefore, the pipeline reliability becomes an important issue. Based on the classical reliability theory, the analysis of pipeline system is carried out, then the reliability model of the pipeline system is built, and the calculation is addressed thereafter. Further the connection and function reliability model is applied to a practical active pipeline system, with the use of the proposed methodology of the pipeline system; the connection reliability and function reliability are obtained. This paper firstly presented to considerate the connection and function reliability separately and obtain significant contribution to establish the mathematical reliability model of pipeline system, hence provide fundamental groundwork for the pipeline reliability research in the future

    Research on Oil and Gas Pipeline Operation Optimization Based on Improved Newton-Raphson Method

    No full text
    Oil and gas pipelines are the main channel to ensure national energy security and national economic development due to the safety and efficiency of the transportation coast. To achieve an optimal state of pipeline operation in terms of safety and efficiency is the crucial important issue throughout the life cycle of a pipeline system. However, the optimization problem of the pipeline network system is a typical Mixed Integer Non-Linear Problem (MINLP) which are extremely difficult to solve. An optimal solution to keep pipeline operated in most efficient state under the premise of safe operation is given in the paper by using the dynamical programming method. Firstly, the improved Newton-Raphson method is used to solve the discrete pipeline system, and the operating parameters such as temperature, pressure and flow of any section surface in the pipeline are obtained. The fluid parameter values of the each discrete nodes can ensure the safety of the pipeline. Based on this, the total energy consumption cost is set as the objective function, and the oil and gas pipeline operation optimization model is then established, and the dynamic programming method is used to solve it, so that it can obtain the optimal solution of the current working conditions in a reasonable computational cost. The actual example shows that the energy cost of the optimized operation scheme can be reduced by 6.8% compared with the pre-optimization scheme

    Distinct AMPK-Mediated FAS/HSL Pathway Is Implicated in the Alleviating Effect of Nuciferine on Obesity and Hepatic Steatosis in HFD-Fed Mice

    No full text
    Nuciferine (Nuci), the main aporphine alkaloid component in lotus leaf, was reported to reduce lipid accumulation in vitro. Herein we investigated whether Nuci prevents obesity in high fat diet (HFD)-fed mice and the underlying mechanism in liver/HepG2 hepatocytes and epididymal white adipose tissue (eWAT) /adipocytes. Male C57BL/6J mice were fed with HFD supplemented with Nuci (0.10%) for 12 weeks. We found that Nuci significantly reduced body weight and fat mass, improved glycolipid profiles, and enhanced energy expenditure in HFD-fed mice. Nuci also ameliorated hepatic steatosis and decreased the size of adipocytes. Furthermore, Nuci remarkably promoted the phosphorylation of AMPK, suppressed lipogenesis (SREBP1, FAS, ACC), promoted lipolysis (HSL, ATGL), and increased the expressions of adipokines (FGF21, ZAG) in liver and eWAT. Besides, fatty acid oxidation in liver and thermogenesis in eWAT were also activated by Nuci. Similar results were further observed at cellular level, and these beneficial effects of Nuci in cells were abolished by an effective AMPK inhibitor compound C. In conclusion, Nuci supplementation prevented HFD-induced obesity, attenuated hepatic steatosis, and reduced lipid accumulation in liver/hepatocytes and eWAT/adipocytes through regulating AMPK-mediated FAS/HSL pathway. Our findings provide novel insight into the clinical application of Nuci in treating obesity and related complications

    Serum Levels of Asprosin, a Novel Adipokine, Are Significantly Lowered in Patients with Acromegaly

    No full text
    Background. Asprosin is a novel identified adipokine secreted mainly by white adipose tissue, which is elevated in metabolic diseases such as diabetes and obesity. Acromegaly is a syndrome caused by pituitary growth hormone (GH) cell adenoma with excessive GH secretion. Serum adipocytokines levels may be involved in abnormal glycolipid metabolism in acromegaly patients. Objectives. To investigate serum asprosin levels in acromegaly patients and its correlation with high GH levels and glucolipid metabolic parameters. Methods. A retrospective case-control study was conducted and 68 acromegaly patients and 121 controls were included in this study. Clinical information and laboratory examinations were collected and serum asprosin levels were measured by commercial ELISA kits. Results. Serum asprosin levels in acromegaly patients were significantly lower than controls (P<0.001). Serum asprosin levels in patients with the course of acromegaly ≥5 years (compared with <5 years), high area under curve of growth hormone (GH-AUC) after 75 g oral glucose tolerance test (OGTT) (compared with low GH-AUC patients), and high IGF-1 SDS group (compared with low IGF-1 SDS group) were significantly reduced (all P<0.05). Serum asprosin levels in acromegaly patients were negatively correlated with the course of acromegaly, IGF-1 SDS, nadir growth hormone value (GH-Nadir), and GH-AUC after OGTT. Multiple stepwise linear regression indicated that acromegaly was an independent influencing factor of serum asprosin levels. According to serum asprosin levels tertiles, the risk of acromegaly in the lowest group was 2.67 times higher than the highest group (OR = 3.665, 95% CI 1.677 ∼ 8.007, P=0.001), and the increased risk of the lowest group still existed after adjusting for gender, age, BMI, and TC (Model 2). Conclusions. Serum asprosin levels in acromegaly patients are lowered, which may be related to increased blood glucose and reduced body fat mass caused by long-term high GH levels exposure

    Unzipping MWCNTs for controlled edge- and heteroatom-defects in revealing their roles in gas-phase oxidative dehydrogenation of ethanol to acetaldehyde

    No full text
    Bioethanol is a promising candidate for acetaldehyde production. In this study, we controllably unzipped multi-walled carbon nanotubes into open-edged nanotube/nanoribbon hybrids via a nano-cutting strategy for metal-free oxidative dehydrogenation of ethanol to acetaldehyde and unravelled the catalytic role of edge defects in the reaction. The edge-rich structure of the 1D-nanotube/2D-nanoribbon hybrid can accelerate the catalytic reaction more efficiently than pristine carbon sample. Moreover, edges can further accommodate nitrogen defects to preferentially form edge-doped nitrogen. Through engineering the concentration and speciation of defects, the structure-performance relationship between the defective structure and ethanol conversion rate is intensively investigated. Theoretical calculations unveil that the nitrogen doped at edge sites other than in basal planes can effectively facilitate O2 dissociation and formation of oxygen-containing active centers. Temperature-programmed ethanol desorption and kinetic measurements further supplement the catalytic interplay of edge and nitrogen defects on ethanol adsorption and reaction kinetics. The synergistic edge and nitrogen defects of the engineered hybrid produced a steady ethanol conversion of 47.9% and acetaldehyde selectivity of 90.2% at the gas hourly space velocity of 48,000 mL gcat-1h−1 on stream of 48 h. This work offers more insights to intrinsic properties and mechanism of enriched defective structures for development of effective carbocatalysts in catalytic applications
    corecore