393 research outputs found

    ADNet: Lane Shape Prediction via Anchor Decomposition

    Full text link
    In this paper, we revisit the limitations of anchor-based lane detection methods, which have predominantly focused on fixed anchors that stem from the edges of the image, disregarding their versatility and quality. To overcome the inflexibility of anchors, we decompose them into learning the heat map of starting points and their associated directions. This decomposition removes the limitations on the starting point of anchors, making our algorithm adaptable to different lane types in various datasets. To enhance the quality of anchors, we introduce the Large Kernel Attention (LKA) for Feature Pyramid Network (FPN). This significantly increases the receptive field, which is crucial in capturing the sufficient context as lane lines typically run throughout the entire image. We have named our proposed system the Anchor Decomposition Network (ADNet). Additionally, we propose the General Lane IoU (GLIoU) loss, which significantly improves the performance of ADNet in complex scenarios. Experimental results on three widely used lane detection benchmarks, VIL-100, CULane, and TuSimple, demonstrate that our approach outperforms the state-of-the-art methods on VIL-100 and exhibits competitive accuracy on CULane and TuSimple. Code and models will be released on https://github.com/ Sephirex-X/ADNet.Comment: ICCV2023 accepte

    Driven Majorana Modes: A Route to Synthetic px+ipyp_x+ip_y Superconductivity

    Full text link
    We propose a protocol to realize synthetic px+ipyp_x+ip_y superconductors in one-dimensional topological systems that host Majorana fermions. By periodically driving a localized Majorana mode across the system, our protocol realizes a topological pumping of Majorana fermions, analogous to the adiabatic Thouless pumping of electrical charges. Importantly, similar to the realization of a Chern insulator through Thouless pumping, we show that pumping of Majorana zero modes could lead to a px+ipyp_x + ip_y superconductor in the two dimensions of space and synthetic time. The Floquet theory is employed to map the driven one-dimensional system to a two-dimensional synthetic system by considering frequency as a new dimension. We demonstrate such Floquet px+ipyp_x + i p_y superconductors using the Kitaev pp-wave superconductor chain, a prototypical 1D topological system, as well as its more realistic realization in the 1D Kondo lattice model as examples. We further show the appearance of a new π\pi Majorana mode at the Floquet zone boundary in an intermediate drive frequency region. Our work suggests a driven magnetic spiral coupled to a superconductor as a promising platform for the realization of novel topological superconductors

    Neural Machine Translation with Dynamic Graph Convolutional Decoder

    Full text link
    Existing wisdom demonstrates the significance of syntactic knowledge for the improvement of neural machine translation models. However, most previous works merely focus on leveraging the source syntax in the well-known encoder-decoder framework. In sharp contrast, this paper proposes an end-to-end translation architecture from the (graph \& sequence) structural inputs to the (graph \& sequence) outputs, where the target translation and its corresponding syntactic graph are jointly modeled and generated. We propose a customized Dynamic Spatial-Temporal Graph Convolutional Decoder (Dyn-STGCD), which is designed for consuming source feature representations and their syntactic graph, and auto-regressively generating the target syntactic graph and tokens simultaneously. We conduct extensive experiments on five widely acknowledged translation benchmarks, verifying that our proposal achieves consistent improvements over baselines and other syntax-aware variants

    Development of a hardware-In-the-Loop (HIL) testbed for cyber-physical security in smart buildings

    Full text link
    As smart buildings move towards open communication technologies, providing access to the Building Automation System (BAS) through the intranet, or even remotely through the Internet, has become a common practice. However, BAS was historically developed as a closed environment and designed with limited cyber-security considerations. Thus, smart buildings are vulnerable to cyber-attacks with the increased accessibility. This study introduces the development and capability of a Hardware-in-the-Loop (HIL) testbed for testing and evaluating the cyber-physical security of typical BASs in smart buildings. The testbed consists of three subsystems: (1) a real-time HIL emulator simulating the behavior of a virtual building as well as the Heating, Ventilation, and Air Conditioning (HVAC) equipment via a dynamic simulation in Modelica; (2) a set of real HVAC controllers monitoring the virtual building operation and providing local control signals to control HVAC equipment in the HIL emulator; and (3) a BAS server along with a web-based service for users to fully access the schedule, setpoints, trends, alarms, and other control functions of the HVAC controllers remotely through the BACnet network. The server generates rule-based setpoints to local HVAC controllers. Based on these three subsystems, the HIL testbed supports attack/fault-free and attack/fault-injection experiments at various levels of the building system. The resulting test data can be used to inform the building community and support the cyber-physical security technology transfer to the building industry.Comment: Presented at the 2023 ASHRAE Winter Conferenc

    Robust Perception through Equivariance

    Full text link
    Deep networks for computer vision are not reliable when they encounter adversarial examples. In this paper, we introduce a framework that uses the dense intrinsic constraints in natural images to robustify inference. By introducing constraints at inference time, we can shift the burden of robustness from training to the inference algorithm, thereby allowing the model to adjust dynamically to each individual image's unique and potentially novel characteristics at inference time. Among different constraints, we find that equivariance-based constraints are most effective, because they allow dense constraints in the feature space without overly constraining the representation at a fine-grained level. Our theoretical results validate the importance of having such dense constraints at inference time. Our empirical experiments show that restoring feature equivariance at inference time defends against worst-case adversarial perturbations. The method obtains improved adversarial robustness on four datasets (ImageNet, Cityscapes, PASCAL VOC, and MS-COCO) on image recognition, semantic segmentation, and instance segmentation tasks. Project page is available at equi4robust.cs.columbia.edu
    • …
    corecore