90 research outputs found

    Development of a hardware-In-the-Loop (HIL) testbed for cyber-physical security in smart buildings

    Full text link
    As smart buildings move towards open communication technologies, providing access to the Building Automation System (BAS) through the intranet, or even remotely through the Internet, has become a common practice. However, BAS was historically developed as a closed environment and designed with limited cyber-security considerations. Thus, smart buildings are vulnerable to cyber-attacks with the increased accessibility. This study introduces the development and capability of a Hardware-in-the-Loop (HIL) testbed for testing and evaluating the cyber-physical security of typical BASs in smart buildings. The testbed consists of three subsystems: (1) a real-time HIL emulator simulating the behavior of a virtual building as well as the Heating, Ventilation, and Air Conditioning (HVAC) equipment via a dynamic simulation in Modelica; (2) a set of real HVAC controllers monitoring the virtual building operation and providing local control signals to control HVAC equipment in the HIL emulator; and (3) a BAS server along with a web-based service for users to fully access the schedule, setpoints, trends, alarms, and other control functions of the HVAC controllers remotely through the BACnet network. The server generates rule-based setpoints to local HVAC controllers. Based on these three subsystems, the HIL testbed supports attack/fault-free and attack/fault-injection experiments at various levels of the building system. The resulting test data can be used to inform the building community and support the cyber-physical security technology transfer to the building industry.Comment: Presented at the 2023 ASHRAE Winter Conferenc

    A critical review of cyber-physical security for building automation systems

    Full text link
    Modern Building Automation Systems (BASs), as the brain that enables the smartness of a smart building, often require increased connectivity both among system components as well as with outside entities, such as optimized automation via outsourced cloud analytics and increased building-grid integrations. However, increased connectivity and accessibility come with increased cyber security threats. BASs were historically developed as closed environments with limited cyber-security considerations. As a result, BASs in many buildings are vulnerable to cyber-attacks that may cause adverse consequences, such as occupant discomfort, excessive energy usage, and unexpected equipment downtime. Therefore, there is a strong need to advance the state-of-the-art in cyber-physical security for BASs and provide practical solutions for attack mitigation in buildings. However, an inclusive and systematic review of BAS vulnerabilities, potential cyber-attacks with impact assessment, detection & defense approaches, and cyber-secure resilient control strategies is currently lacking in the literature. This review paper fills the gap by providing a comprehensive up-to-date review of cyber-physical security for BASs at three levels in commercial buildings: management level, automation level, and field level. The general BASs vulnerabilities and protocol-specific vulnerabilities for the four dominant BAS protocols are reviewed, followed by a discussion on four attack targets and seven potential attack scenarios. The impact of cyber-attacks on BASs is summarized as signal corruption, signal delaying, and signal blocking. The typical cyber-attack detection and defense approaches are identified at the three levels. Cyber-secure resilient control strategies for BASs under attack are categorized into passive and active resilient control schemes. Open challenges and future opportunities are finally discussed.Comment: 38 pages, 7 figures, 6 tables, submitted to Annual Reviews in Contro

    The prognostic value of whole-genome DNA methylation in response to Leflunomide in patients with Rheumatoid Arthritis

    Get PDF
    ObjectiveAlthough Leflunomide (LEF) is effective in treating rheumatoid arthritis (RA), there are still a considerable number of patients who respond poorly to LEF treatment. Till date, few LEF efficacy-predicting biomarkers have been identified. Herein, we explored and developed a DNA methylation-based predictive model for LEF-treated RA patient prognosis.MethodsTwo hundred forty-five RA patients were prospectively enrolled from four participating study centers. A whole-genome DNA methylation profiling was conducted to identify LEF-related response signatures via comparison of 40 samples using Illumina 850k methylation arrays. Furthermore, differentially methylated positions (DMPs) were validated in the 245 RA patients using a targeted bisulfite sequencing assay. Lastly, prognostic models were developed, which included clinical characteristics and DMPs scores, for the prediction of LEF treatment response using machine learning algorithms.ResultsWe recognized a seven-DMP signature consisting of cg17330251, cg19814518, cg20124410, cg21109666, cg22572476, cg23403192, and cg24432675, which was effective in predicting RA patient’s LEF response status. In the five machine learning algorithms, the support vector machine (SVM) algorithm provided the best predictive model, with the largest discriminative ability, accuracy, and stability. Lastly, the AUC of the complex model(the 7-DMP scores with the lymphocyte and the diagnostic age) was higher than the simple model (the seven-DMP signature, AUC:0.74 vs 0.73 in the test set).ConclusionIn conclusion, we constructed a prognostic model integrating a 7-DMP scores with the clinical patient profile to predict responses to LEF treatment. Our model will be able to effectively guide clinicians in determining whether a patient is LEF treatment sensitive or not

    Gene Expression Program Underlying Tail Resorption During Thyroid Hormone-Dependent Metamorphosis of the Ornamented Pygmy Frog Microhyla fissipes

    Get PDF
    Thyroid hormone (T3) is essential for vertebrate development, especially during the so-called postembryonic development, a period around birth in mammals when plasma T3 level peaks and many organs mature into their adult form. Compared to embryogenesis, postembryonic development is poorly studied in mammals largely because of the difficulty to manipulate the uterus-enclosed embryos and neonates. Amphibian metamorphosis is independent of maternal influence and can be easily manipulated for molecular and genetic studies, making it a valuable model to study postembryonic development in vertebrates. Studies on amphibian metamorphosis have been largely focused on the two highly related species Xenopus laevis and Xenopus tropicalis. However, adult X. laevis and X. tropicalis animals remain aquatic. This makes important to study metamorphosis in a species in which postmetamorphic frogs live on land. In this regard, the anuran Microhyla fissipes represents an alternative model for developmental and genetic studies. Here we have made use of the advances in sequencing technologies to investigate the gene expression profiles underlying the tail resorption program during metamorphosis in M. fissipes. We first used single molecule real-time sequencing to obtain 67, 939 expressed transcripts in M. fissipes. We next identified 4,555 differentially expressed transcripts during tail resorption by using Illumina sequencing on RNA samples from tails at different metamorphic stages. Bioinformatics analyses revealed that 11 up-regulated KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways and 88 Gene Ontology (GO) terms as well as 21 down-regulated KEGG pathways and 499 GO terms were associated with tail resorption. Our findings suggest that tail resorption in M. fissipes and X. laevis shares many programs. Future investigations on function and regulation of these genes and pathways should help to reveal the mechanisms governing amphibian tail resorption and adaptive evolution from aquatic to terrestrial life. Furthermore, analysis of the M. fissipes model, especially, on the changes in other organs associated with the transition from aquatic to terrestrial living, should help to reveal important mechanistic insights governing mammalian postembryonic developments

    Development of innovation team construction and key technology research in coal mine intelligence

    No full text
    This paper analyzes the outstanding technical weaknesses in the intelligent construction of coal mines in China. This paper puts forward 12 innovative research and development directions, including intelligent system design, information infrastructure, intelligent geological support, intelligent mining and transportation, intelligent safety prediction and early warning, intelligent power supply and intelligent water affairs, intelligent washing, intelligent parks, intelligent open-pit coal mines, intelligent well construction, intelligent equipment and robots, and emergency rescue and supervision. 46 coal mine intelligent innovation teams have been established, forming the strongest team of coal mine intelligent innovation. The target collaboration, organization collaboration, knowledge collaboration and business collaboration models of the innovation chain and industry chain are established. Relying on 136 provincial experimental platforms, this study takes the lead in obtaining a number of innovative achievements in the important technical direction of the intelligent coal mine. This paper provides technical support for the construction of intelligent coal mine in our country. This study puts forward 9 key breakthrough directions to continuously promote the intelligent construction of coal mines and improve the technical equipment support capacity. It is suggested to continuously build the intelligent support technology system of coal mine, accelerate the construction of the intelligent technology standard system of coal mine and the construction benefit evaluation system, and accelerate the research and application of the intelligent 'MineCloud' of coal mine. It is suggested to develop complete sets of intelligent mining process equipment for large mining height caving coal, strengthen the research and development of intelligent fast heading technology and equipment, and develop highly reliable and stable intelligent mine sensors. It is suggested to accelerate the research and development of key technologies of coal mine robot cluster, accelerate the construction of intelligent washing complete equipment and process package development, and strengthen the advanced and mature intelligent process and the stability and high reliability of core equipment in open-pit coal mines

    Diversity and Distribution Characteristics of Soil Microbes across Forest–Peatland Ecotones in the Permafrost Regions

    No full text
    Permafrost peatlands are a huge carbon pool that is uniquely sensitive to global warming. However, despite the importance of peatlands in global carbon sequestration and biogeochemical cycles, few studies have characterized the distribution characteristics and drivers of soil microbial community structure in forest–peatland ecotones. Here, we investigated the vertical distribution patterns of soil microbial communities in three typical peatlands along an environmental gradient using Illumina high-throughput sequencing. Our findings indicated that bacterial richness and diversity decreased with increasing soil depth in coniferous swamp (LT) and thicket swamp (HT), whereas the opposite trend was observed in a tussock swamp (NT). Additionally, these parameters decreased at 0–20 and 20–40 cm and increased at 40–60 cm along the environmental gradient (LT to NT). Principal coordinate analysis (PCoA) indicated that the soil microbial community structure was more significantly affected by peatland type than soil depth. Actinomycetota, Proteobacteria, Firmicutes, Chloroflexota, Acidobacteriota, and Bacteroidota were the predominant bacterial phyla across all soil samples. Moreover, there were no significant differences in the functional pathways between the three peatlands at each depth, except for amino acid metabolism, membrane transport, cell motility, and signal transduction. Redundancy analysis (RDA) revealed that pH and soil water content were the primary environmental factors influencing the bacterial community structure. Therefore, this study is crucial to accurately forecast potential changes in peatland ecosystems and improve our understanding of the role of peat microbes as carbon pumps in the process of permafrost degradation

    Ionic liquids with variable cations as cathode interlayer for conventional polymer solar cells

    No full text
    Interfacial layer materials have been demonstrated to be crucial for high-efficiency polymer solar cells (PSCs). In this work, we use ionic liquid (IL) as cathode interfacial layer (CIL) for highly efficient conventional PSCs (c-PSCs) and investigate functions of ILs with different cations and substituents. Employing IL as the CIL, PBDITT-C:PC71BM-based c-PSC affords a power conversion efficiency (PCE) of 7.29%, much higher than that without the CIL (2.78%) and that with Ca/Al electrode (6.18%). When the photoactive layer is a PTB7-Th:PC71BM blend, a higher PCE of 8.67% can be obtained. The Its reduce the energy barrier due to the existence of interfacial dipole in c-PSCs, leading to increased electron and hole mobilities, reduced series resistance and enhanced contact at the cathode interface. Meanwhile, alkyl chain-substituted ILs offer higher fill factor and PCE than aromatic groups-substituted analogue, which is mainly contributed to more balanced electron and hole mobilities. This work suggests that the ILs are qualified candidates as the CIL for c-PSCs and that one should take the substitution effect into account when choosing a CIL from a large library of materials. (C) 2016 Published by Elsevier B.V
    corecore