160 research outputs found

    Formulation optimization for high drug loading colonic drug delivery carrier

    Full text link
    High drug loading (DL) carrier is an effective way to cure the cancerous cells. High drug loading is also one of the key issues in the drug delivery research, especially the colonic drug delivery system by oral administration. The times of drug intake could be remarkably reduced if high drug loading carriers are administered. At the same time, the related formulation materials could be effectively utilized. One major obstacle with the preparation of this system is the difficulty to encapsulate the hydrophilic drug into hydrophobic encapsulation polymer. A design of high drug loading delivery system with biodegradable, biocompatible materials and optimization of the fabrication process is a potential solution to solve the problem. So in this research, 5-Fluorouracil (5-FU) loaded Poly (lactide-co-glycolide) (PLGA) nanoparticles were prepared by double emulsion and solvent evaporation method. Several fabrication parameters including theoretical drug loading, volume ratio of outer water phase to the first emulsion, pH value of outer aqueous phase and emulsifier PVA concentration were optimized to get a high drug loading nanoparticles. The result shows that with the increase of theoretical drug loading, the actual drug loading increased gradually. When adjusted the pH value of outer aqueous phase to the isoelectric point (8.02) of 5-Fluorouracil, the drug loading exhibited a higher one compared to other pH value solution. Relative higher volume ratio of outer water phase to the first emulsion was also beneficial for the enhancement of drug loading. But the nanoparticles size increased simultaneously due to the lower shearing force. When increased the PVA concentration, the drug loading showed an increase first and following a drop

    Regulation of HbPIP2;3, a latex-abundant water transporter, is associated with latex dilution and yield in the rubber tree (Hevea brasiliensis Muell. Arg.)

    Full text link
    Rubber tree (Hevea brasiliensis) latex, the source of natural rubber, is synthesised in the cytoplasm of laticifers. Efficient water inflow into laticifers is crucial for latex flow and production since it is the determinant of the total solid content of latex and its fluidity after tapping. As the mature laticifer vessel rings are devoid of plasmodesmata, water exchange between laticifers and surrounding cells is believed to be governed by plasma membrane intrinsic proteins (PIPs). To identify the most important PIP aquaporin in the water balance of laticifers, the transcriptional profiles of ten-latex-expressed PIPs were analysed. One of the most abundant transcripts, designated HbPIP2;3, was characterised in this study. When tested in Xenopus laevis oocytes HbPIP2;3 showed a high efficiency in increasing plasmalemma water conductance. Expression analysis indicated that the HbPIP2;3 gene was preferentially expressed in latex, and the transcripts were up-regulated by both wounding and exogenously applied Ethrel (a commonly-used ethylene releaser). Although regular tapping up-regulated the expression of HbPIP2;3 during the first few tappings of the virginal rubber trees, the transcriptional kinetics of HbPIP2;3 to Ethrel stimulation in the regularly tapped tree exhibited a similar pattern to that of the previously reported HbPIP2;1 in the virginal rubber trees. Furthermore, the mRNA level of HbPIP2;3 was associated with clonal yield potential and the Ethrel stimulation response. Together, these results have revealed the central regulatory role of HbPIP2;3 in laticifer water balance and ethylene stimulation of latex production in Hevea

    Molecular dynamics study of response of liquid N,N-dimethylformamide to externally applied electric field using a polarizable force field

    Full text link
    The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform external electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties

    Toward the fabrication of advanced nanofiltration membranes by controlling morphologies and mesochannel orientations of hexagonal lyotropic liquid crystals

    Full text link
    Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF) membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs) and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane
    corecore