2 research outputs found

    TRPV1 neurons regulate β-cell function in a sex-dependent manner

    No full text
    There is emerging evidence to support an important role for the transient receptor potential vanilloid type 1 (TRPV1) sensory innervation in glucose homeostasis. However, it remains unknown whether the glucoregulatory action of these afferent neurons is sex-biased and whether it is pancreatic β-cell-mediated. Objective: We investigated in male and female mice whether denervation of whole-body or pancreas-projecting TRPV1 sensory neurons regulates adult functional β-cell mass and alters systemic glucose homeostasis. Methods: We used a combination of pharmacological and surgical approaches to ablate whole-body or pancreatic TRPV1 sensory neurons and assessed islet β-cell function and mass, aspects of glucose and insulin homeostasis, and energy expenditure. Results: Capsaicin-induced chemodenervation of whole-body TRPV1 sensory neurons improved glucose clearance and enhanced glucose-stimulated insulin secretion without alterations in β-cell proliferation and mass, systemic insulin sensitivity, body composition, and energy expenditure. Similarly, denervation of intrapancreatic TRPV1 afferents by pancreas intraductal injection of capsaicin or surgical removal of the dorsal root ganglia projecting into the pancreas lowered post-absorptive glucose levels and increased insulin release upon glucose stimulation. The beneficial effects of TRPV1 sensory denervation on glucose tolerance and β-cell function were observed in male but not female mice. Conclusion: Collectively, these findings suggest that TRPV1 neurons regulate glucose homeostasis, at least partly, through direct modulation of glucose-induced insulin secretion and that this regulation operates in a sex-dependent manner. Keywords: TRPV1 sensory innervation, Glucose homeostasis, β-cell function, Sex differenc

    Treatment of autosomal dominant retinitis pigmentosa caused by RHO-P23H mutation with high-fidelity Cas13X in mice

    No full text
    Mutations in Rhodopsin (RHO) gene commonly cause autosomal dominant retinitis pigmentosa (adRP) without effective therapeutic treatment so far. Compared with genomic DNA-targeting CRISPR-Cas9 system, Cas13 edits RNA for therapeutic applications, avoiding the risk of causing permanent changes in the genome. In particular, a compact and high-fidelity Cas13X (hfCas13X) recently has been developed to degrade targeted RNA with minimal collateral effects and could also be packaged in a single adeno-associated virus for efficient in vivo delivery. In this study, we engineered single-guide RNA for hfCas13X to specifically knock down human mutant Rhodopsin transcripts RHO-P23H with minimal effect on wild-type transcripts. Moreover, treatment with hfCas13X alleviated the adRP progression in both RHO-P23H overexpression-induced and humanized hRHOP23H/WT mouse models. Our study indicates the potential of hfCas13X in treating adRP caused by RHO mutations and other genetic diseases
    corecore