231 research outputs found

    Control of Centrin Stability by Aurora A

    Get PDF
    Aurora A is an oncogenic serine/threonine kinase which can cause cell transformation and centrosome amplification when over-expressed. Human breast tumors show excess Aurora A and phospho-centrin in amplified centrosomes. Here, we show that Aurora A mediates the phosphorylation of and localizes with centrin at the centrosome, with both proteins reaching maximum abundance from prophase through metaphase, followed by their precipitous loss in late stages of mitosis. Over-expression of Aurora A results in excess phospho-centrin and centrosome amplification. In contrast, centrosome amplification is not seen in cells over-expressing Aurora A in the presence of a recombinant centrin mutant lacking the serine phosphorylation site at residue 170. Expression of a kinase dead Aurora A results in a decrease in mitotic index and abrogation of centrin phosphorylation. Finally, a recombinant centrin mutation that mimics centrin phosphorylation increases centrin's stability against APC/C-mediated proteasomal degradation. Taken together, these results suggest that the stability of centrin is regulated in part by Aurora A, and that excess phosphorylated centrin may promote centrosome amplification in cancer

    Expression profiling of formalin-fixed paraffin-embedded primary breast tumors using cancer-specific and whole genome gene panels on the DASL® platform

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cDNA-mediated Annealing, extension, Selection and Ligation (DASL) assay has become a suitable gene expression profiling system for degraded RNA from paraffin-embedded tissue. We examined assay characteristics and the performance of the DASL 502-gene Cancer Panel<sup>v1 </sup>(1.5K) and 24,526-gene panel (24K) platforms at differentiating nine human epidermal growth factor receptor 2- positive (HER2+) and 11 HER2-negative (HER2-) paraffin-embedded breast tumors.</p> <p>Methods</p> <p>Bland-Altman plots and Spearman correlations evaluated intra/inter-panel agreement of normalized expression values. Unequal-variance <it>t</it>-statistics tested for differences in expression levels between HER2 + and HER2 - tumors. Regulatory network analysis was performed using Metacore (GeneGo Inc., St. Joseph, MI).</p> <p>Results</p> <p>Technical replicate correlations ranged between 0.815-0.956 and 0.986-0.997 for the 1.5K and 24K panels, respectively. Inter-panel correlations of expression values for the common 498 genes across the two panels ranged between 0.485-0.573. Inter-panel correlations of expression values of 17 probes with base-pair sequence matches between the 1.5K and 24K panels ranged between 0.652-0.899. In both panels, <it>erythroblastic leukemia viral oncogene homolog 2 </it>(<it>ERBB2</it>) was the most differentially expressed gene between the HER2 + and HER2 - tumors and seven additional genes had p-values < 0.05 and log2 -fold changes > |0.5| in expression between HER2 + and HER2 - tumors: <it>topoisomerase II alpha </it>(<it>TOP2A</it>), <it>cyclin a2 </it>(<it>CCNA2</it>), <it>v-fos fbj murine osteosarcoma viral oncogene homolog </it>(<it>FOS</it>), <it>wingless-type mmtv integration site family, member 5a </it>(<it>WNT5A</it>), <it>growth factor receptor-bound protein </it><it>7 </it>(<it>GRB7</it>), <it>cell division cycle 2 </it>(<it>CDC2</it>), <it>and baculoviral iap repeat-containing protein 5 </it>(<it>BIRC5</it>). The top 52 discriminating probes from the 24K panel are enriched with genes belonging to the regulatory networks centered around <it>v-myc avian myelocytomatosis viral oncogene homolog </it>(<it>MYC</it>), <it>tumor protein p53 </it>(<it>TP53</it>), and <it>estrogen receptor α </it>(<it>ESR1</it>). Network analysis with a two-step extension also showed that the eight discriminating genes common to the 1.5K and 24K panels are functionally linked together through <it>MYC</it>, <it>TP53</it>, and <it>ESR1</it>.</p> <p>Conclusions</p> <p>The relative RNA abundance obtained from two highly differing density gene panels are correlated with eight common genes differentiating HER2 + and HER2 - breast tumors. Network analyses demonstrated biological consistency between the 1.5K and 24K gene panels.</p

    The mammalian centrosome and its functional significance

    Get PDF
    Primarily known for its role as major microtubule organizing center, the centrosome is increasingly being recognized for its functional significance in key cell cycle regulating events. We are now at the beginning of understanding the centrosome’s functional complexities and its major impact on directing complex interactions and signal transduction cascades important for cell cycle regulation. The centrosome orchestrates entry into mitosis, anaphase onset, cytokinesis, G1/S transition, and monitors DNA damage. Recently, the centrosome has also been recognized as major docking station where regulatory complexes accumulate including kinases and phosphatases as well as numerous other cell cycle regulators that utilize the centrosome as platform to coordinate multiple cell cycle-specific functions. Vesicles that are translocated along microtubules to and away from centrosomes may also carry enzymes or substrates that use centrosomes as main docking station. The centrosome’s role in various diseases has been recognized and a wealth of data has been accumulated linking dysfunctional centrosomes to cancer, Alstrom syndrome, various neurological disorders, and others. Centrosome abnormalities and dysfunctions have been associated with several types of infertility. The present review highlights the centrosome’s significant roles in cell cycle events in somatic and reproductive cells and discusses centrosome abnormalities and implications in disease

    Downregulation of pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexose-phosphate levels

    Get PDF
    Analyses of transgenic sugarcane clones with 45–95% reduced cytosolic pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) activity displayed no visual phenotypical change, but significant changes were evident in in vivo metabolite levels and fluxes during internode development. In three independent transgenic lines, sucrose concentrations increased between three- and sixfold in immature internodes, compared to the levels in the wildtype control. There was an eightfold increase in the hexose-phosphate:triose-phosphate ratio in immature internodes, a significant restriction in the triose phosphate to hexose phosphate cycle and significant increase in sucrose cycling as monitored by 13C nuclear magnetic resonance. This suggests that an increase in the hexose-phosphate concentrations resulting from a restriction in the conversion of hexose phosphates to triose phosphates drive sucrose synthesis in the young internodes. These effects became less pronounced as the tissue matured. Decreased expression of PFP also resulted in an increase of the ATP/ADP and UTP/UDP ratios, and an increase of the total uridine nucleotide and, at a later stage, the total adenine nucleotide pool, revealing strong interactions between PPi metabolism and general energy metabolism. Finally, decreased PFP leads to a reduction of PPi levels in older internodes indicating that in these developmental stages PFP acts in the gluconeogenic direction. The lowered PPi levels might also contribute to the absence of increases in sucrose contents in the more mature tissues of transgenic sugarcane with reduced PFP activity

    Interaction of enkephalin and caerulein on guinea pig small intestine

    No full text
    corecore