61 research outputs found

    Post-procedural and long-term functional outcomes of jailed side branches in stented coronary bifurcation lesions assessed with side branch Murray law–based quantitative flow ratio

    Get PDF
    IntroductionIn coronary bifurcation lesions treated with percutaneous coronary intervention (PCI) using a 1-stent strategy, the occurrence of side branch (SB) compromise may lead to long-term myocardial ischemia in the SB territory. Murray law–based quantitative flow ratio (μQFR) is a novel angiography-based approach estimating fractional flow reserve from a single angiographic view, and thus is more feasible to assess SB compromise in routine practice. However, its association with long-term SB coronary blood flow remains unknown.MethodsA total of 146 patients with 313 non-left main bifurcation lesions receiving 1-stent strategy with drug-eluting stents was included in this retrospective study. These lesions had post-procedural Thrombolysis in Myocardial Infarction (TIMI) flow grade 3 in SBs, and documented angiographic images of index procedure and 6- to 24-month angiographic follow-up. Post-procedural SB μQFR was calculated. Long-term SB coronary blood flow was quantified with the TIMI grading system using angiograms acquired at angiographic follow-up.ResultsAt follow-up, 8 (2.6%), 16 (5.1%), 61 (19.5%), and 228 (72.8%) SBs had a TIMI flow grade of 0, 1, 2, and 3, respectively. The incidences of long-term SB TIMI flow grade ≤1 and ≤2 both tended to decrease across the tertiles of post-procedural SB μQFR. The receiver operating characteristic curve analyses indicated the post-procedural SB μQFR ≤0.77 was the optimal cut-off value to identify long-term SB TIMI flow grade ≤1 (specificity, 37.50%; sensitivity, 87.20%; area under the curve, 0.6673; P = 0.0064), and it was independently associated with 2.57-fold increased risk (adjusted OR, 2.57; 95% CI, 1.02–7.25; P = 0.045) in long-term SB TIMI flow grade ≤1 after adjustment.DiscussionPost-procedural SB μQFR was independently associated with increased risk in impaired SB TIMI flow at long-term follow-up. Further investigations should focus on whether PCI optimization based on μQFR may contribute to improve SB flow in the long term

    Microwave-Assisted Synthesis of Few-Layer Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> Loaded with Ni<sub>0.5</sub>Co<sub>0.5</sub>Se<sub>2</sub> Nanospheres for High-Performance Supercapacitors

    No full text
    Transition metal selenides have high theoretical capacities, making them attractive candidates for energy storage applications. Here, using the microwave-absorbing properties of the materials, we designed a simple and efficient microwave-assisted synthesis method to produce a composite made of nanospheres Ni0.5Co0.5Se2 (NCSe) and highly conductive, stable Ti3C2Tx MXene. The Ni0.5Co0.5Se2/Ti3C2Tx composites are characterized via scanning electron microscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. The findings indicate that 3D Ni0.5Co0.5Se2 bimetallic selenide nanospheres were uniformly loaded within the few-layer Ti3C2Tx MXene wrapper in a short period. The optimal NCSe/Ti3C2Tx−2 electrode can demonstrate a specific capacitance of 752.4 F g–1 at 1 A g–1. Furthermore, the asymmetric supercapacitor combined with activated carbon maintains a capacitance retention of 110% even after 5000 cycles. The method of directly growing active substances on few-layer Ti3C2Tx MXene will provide inspiration for the manufacture of high-pseudocapacitance supercapacitors

    Experimental Study on the Forced Ventilation Safety during the Construction of a Large-Slope V-Shaped Tunnel

    No full text
    The special large-slope V-shaped structure of underwater tunnels changes the ventilation characteristics during tunnel construction, making the traditional experience limited. Therefore, it is urgent to study the influence of the special structure on the safety of the air environment during construction. In this paper, a series of small-scale experiments were conducted to investigate the ventilation characteristics of V-shaped tunnels. The coupled effects of ventilation parameters (distance of duct outlet from working face L0, air velocity at the duct outlet u0) and structural characteristics (digging length Ld, slope of the uphill section θ) were considered. The extreme slope of the V-shaped tunnel of 8% was considered. The flow field and pollutant transport law were determined by using CO as a tracer in the experiments. The results show that u0 has a positive impact on the air return velocity, while Ld has a negative impact, and neither of the other two factors has a significant effect. The transport characteristics of CO in V-shaped tunnels differ from those in flat tunnels, with the former tending to cause unconventional areas of high pollutant concentrations in the horizontal sections. Furthermore, the correlations between CO concentration and distance, ventilation time, and the influence factors discussed in this paper are derived from the experimental results. The conclusions provide guidance for the construction of V-shaped tunnels to prevent air pollution in the construction environment and to improve the working conditions of laborers. Additionally, it can also enrich the ventilation experience in tunnel construction

    Optimizing the Junction-Tree-Based Reinforcement Learning Algorithm for Network-Wide Signal Coordination

    No full text
    This study develops three measures to optimize the junction-tree-based reinforcement learning (RL) algorithm, which will be used for network-wide signal coordination. The first measure is to optimize the frequency of running the junction-tree algorithm (JTA) and the intersection status division. The second one is to optimize the JTA information transmission mode. The third one is to optimize the operation of a single intersection. A test network and three test groups are built to analyze the optimization effect. Group 1 is the control group, group 2 adopts the optimizations for the basic parameters and the information transmission mode, and group 3 adopts optimizations for the operation of a single intersection. Environments with different congestion levels are also tested. Results show that optimizations of the basic parameters and the information transmission mode can improve the system efficiency and the flexibility of the green light, and optimizing the operation of a single intersection can improve the efficiency of both the system and the individual intersection. By applying the proposed optimizations to the existing JTA-based RL algorithm, network-wide signal coordination can perform better

    Study on the Design of Variable Lane Demarcation in Urban Tunnels

    No full text
    In order to alleviate the influence of low-speed vehicles on tunnel safety, this paper discusses the setting method of variable lane boundaries in urban tunnels. VISSIM simulation software is used to analyze the influence of low-speed vehicles on tunnel traffic flow when lane changes are allowed and when lane changes are prohibited. The results show that the influence of low-speed vehicles on the average speed of traffic flow in urban tunnels is the greatest, and the influence of low-speed vehicles on the average speed of traffic flow can be significantly alleviated when lane changes are allowed in the lane dividing line. When the speed of low-speed vehicles is 40 km/h and the variable lane is set, the average delay time is reduced by 30&ndash;50%. The existence of low-speed vehicles significantly increased the average delay time of the local lane, and the lower the vehicle speed and the greater the road traffic volume, the longer the average delay time. When the speed of low-speed vehicles is 40 km/h and the traffic volume is 1200 pcu/h, the traffic density of the right-hand lane decreases by 43.5% after the variable lane is set. While lane changing is prohibited, the presence of low-speed vehicles causes a backlog of vehicles in the rear of the lane, which leads to a significant increase in traffic density. Setting lane-changing permits can alleviate the impact of low-speed vehicles on traffic flow. The research results can provide a scientific basis for the operation and management of urban tunnels

    Study on the Design of Variable Lane Demarcation in Urban Tunnels

    No full text
    In order to alleviate the influence of low-speed vehicles on tunnel safety, this paper discusses the setting method of variable lane boundaries in urban tunnels. VISSIM simulation software is used to analyze the influence of low-speed vehicles on tunnel traffic flow when lane changes are allowed and when lane changes are prohibited. The results show that the influence of low-speed vehicles on the average speed of traffic flow in urban tunnels is the greatest, and the influence of low-speed vehicles on the average speed of traffic flow can be significantly alleviated when lane changes are allowed in the lane dividing line. When the speed of low-speed vehicles is 40 km/h and the variable lane is set, the average delay time is reduced by 30–50%. The existence of low-speed vehicles significantly increased the average delay time of the local lane, and the lower the vehicle speed and the greater the road traffic volume, the longer the average delay time. When the speed of low-speed vehicles is 40 km/h and the traffic volume is 1200 pcu/h, the traffic density of the right-hand lane decreases by 43.5% after the variable lane is set. While lane changing is prohibited, the presence of low-speed vehicles causes a backlog of vehicles in the rear of the lane, which leads to a significant increase in traffic density. Setting lane-changing permits can alleviate the impact of low-speed vehicles on traffic flow. The research results can provide a scientific basis for the operation and management of urban tunnels
    • …
    corecore