27 research outputs found

    Study on Resistance Switching Properties of Na0.5Bi0.5TiO3Thin Films Using Impedance Spectroscopy

    Get PDF
    The Na0.5Bi0.5TiO3(NBT) thin films sandwiched between Au electrodes and fluorine-doped tin oxide (FTO) conducting glass were deposited using a solā€“gel method. Based on electrochemical workstation measurements, reproducible resistance switching characteristics and negative differential resistances were obtained at room temperature. A local impedance spectroscopy measurement of Au/NBT was performed to reveal the interface-related electrical characteristics. The DC-bias-dependent impedance spectra suggested the occurrence of charge and mass transfer at the interface of the Au/NBT/FTO device. It was proposed that the first and the second ionization of oxygen vacancies are responsible for the conduction in the low- and high-resistance states, respectively. The experimental results showed high potential for nonvolatile memory applications in NBT thin films

    Monitoring Spatialā€“Temporal Variations in River Width in the Aral Sea Basin with Sentinel-2 Imagery

    No full text
    Rivers in arid regions serve as crucial freshwater resources for local communities and play an essential role in global hydrological and biogeochemical cycles. The Aral Sea Basin (ASB) in Central Asia is characterized by an arid climate and river dynamics that are sensitive to climate change and human activities. Monitoring the spatiotemporal variations in river water extent in the ASB is essential to maintain an ecological balance and ensure water security. In this study, we extracted data regarding monthly river water bodies in the ASB from 2017 to 2022 by synthesizing monthly Sentinel-2 images. The water extents on the Sentinel images were automatically mapped using the Otsu method, and the river widths for all river channels were calculated using the RivWidth algorithm. We investigated the relationships between the river dynamics and the geomorphology, climatic change, human activities, and the annual and interannual variations in the river width in different reaches of the basin. The results show a seasonal variability in the river width, with most rivers reaching the largest width in the warm season and a few rivers in the middle and lower areas reaching the valley value in the warm season. Compared to their tributaries, the mainstem in the middle/lower regions showed less seasonal variability. According to interannual analysis, most of the rivers in the ASB significantly narrowed between 2017 and 2022, a phenomenon which is generally impacted by temperature and evapotranspiration variations. Comparisons show that our results provide improved information about the narrow river reaches and denser river networks compared to the previous global dataset, demonstrating the advantageous properties of high spatial resolution in Sentinel-2 imagery

    Erchen Decoction Ameliorates Lipid Metabolism by the Regulation of the Protein CAV-1 and the Receptors VLDLR, LDLR, ABCA1, and SRB1 in a High-Fat Diet Rat Model

    No full text
    Lipid metabolism disorder is a common metabolic disorder characterized by abnormal lipid levels in blood. Erchen decoction (ECD) is a traditional Chinese medicine prescription, which is used for the treatment of diseases caused by retention of phlegm dampness. It has been reported to ameliorate the disorder of lipid metabolism. The aim of the present study was to investigate the effects and underlying mechanisms of ECD in lipid metabolism disorder induced by a high-fat diet (HFD) in rats. ECD (4.35g/kg/d) and atorvastatin (10mg/kg/d, positive control) were orally administered to HFD-fed rats for four weeks. The parameters, food, water consumption, body weight, body length, liver, and visceral fat weight and the content of serum lipids and lipid transporters were assessed. The effects of ECD on the mRNA and protein expression levels of lipid transport factors were measured by real-time PCR and western blotting. The present study demonstrated that ECD improved the disorders of serum lipid and lipid transporters in HFD-fed rats, TG (0.70Ā±0.08 mmol/L, p0.05). Concomitantly, ECD reversed the abnormal expressions of those lipid transport factors in the liver and visceral fat

    Effects of Nitrogen on Photosynthetic Productivity and Yield Quality of Wheat (<i>Triticum aestivum</i> L.)

    No full text
    This study aims to understand the influence of chlorophyll fluorescence parameters on the yield of winter wheat in some areas of China. Nitrogen (N) application is believed to improve photosynthesis in flag leaf, which ultimately increases the final yield. The experiment was conducted in the wheat experimental base of Shanxi Agricultural University in Taigu, Shanxi Province, China; before sowing, four N application rates were setā€”N0, N120, N150, and N210 kg haā€“1 of the Yunhan-20410 variety from 2019 to 2022. The results from different parameters of research showed that the organic manure partial substitution for chemical fertilizer increased post-anthesis N uptake by 16.4 and 81.4%, thus increasing the post-anthesis photosynthetic capacity and delaying leaf senescence. N150 treatment can improve dry matter (DM) accumulation, thus promoting the increase of the yield. The maximum net photosynthesis PN value of the booting stage and flowering stage indicated that nitrogen application could significantly improve the photosynthetic rate of wheat leaves, among which medium nitrogen treatment had the most significant promoting effect. The single-photon avalanche diode (SPAD) value of the leaf of wheat in each treatment increased rapidly in a small range from the jointing stage to the booting stage, respectively. The grain yield under N fertilizer partial substitution for N fertilizer treatment increased by 23%. According to the different significance test, the effects of nitrogen application rate on net photosynthesis PN of winter wheat were extremely significant at all growth stages, indicating that changing the population distribution mode and nitrogen level could effectively improve leaf photosynthetic performance and that N150 level was the best

    Chaihu-Shugan-San administration ameliorates perimenopausal anxiety and depression in rats.

    Get PDF
    Chaihu-Shugan-San (CSS) is a traditional Chinese herbal formula that is widely used for treating perimenopausal symptoms in China; however, its mechanisms remain unknown. The present study was designed to investigate potential CSS mechanisms in rats with unpredicted chronic mild stress (UCMS) and normally aging rats (52 weeks of age). We performed the sucrose consumption test along with the forced swimming test to confirm depression-like behavior and the open field test (OFT) to confirm anxiety-like behavior in the animals. In addition, we used an enzyme-linked immunosorbent assay to measure serum and hippocampal estradiol (E2) levels and a quantitative real-time polymerase chain reaction to assess hippocampal mRNA levels of estrogen receptors (ERs) Ī± and Ī² as well as G protein-coupled receptor 30 (GPR30). We found that CSS administration resulted in a significant increase in the ratio of hippocampal ERĪ± and ERĪ² mRNA (ERĪ±/ERĪ² ratio) in UCMS rats (p<0.001). However, no significant changes were observed in E2 levels, ERĪ± mRNA expression, and GPR30 mRNA expression. In contrast, changes in ERĪ±/ERĪ² mRNA ratio were sensitively associated with changes in mood states in the animal models. These findings suggest that enhancement of ERĪ±/ERĪ² ratio may play a role in the pharmacological mechanisms of CSS. Furthermore, this ratio can be employed as a potential index for evaluating mood states in animal models and can be considered as a therapeutic target for perimenopausal anxiety and depression in the future

    Nitrogen Application Can Optimize Form of Selenium in Soil in Selenium-Rich Areas to Affect Selenium Absorption and Accumulation in Black Wheat

    No full text
    The composition and form of selenium in the soil have significant effects on the selenium content of crops. In this study, we investigated the selenium absorption pathway in plants by studying the interaction between nitrogen fertilizer and soil selenium. Our results showed that the selenium concentration enrichment factors (CEF) varied within the same region due to nitrogen fertilizer application, where they ranged from 1.33 to 5.02. The soil selenium flow coefficient (mobility factor, MF) increased with higher nitrogen application rates. The sum of the MF values for each soil layer treated with nitrogen application rates of 192 kg hmāˆ’2 and 240 kg hmāˆ’2 was 0.70, which was 64% higher than that for the control group with no nitrogen application. In the 0ā€“20 cm soil layer, the highest summed water-soluble and exchangeable selenium and relative percentage of total selenium (12.45%) was observed at a nitrogen application rate of 240 kg hmāˆ’2. In the 20ā€“40 cm soil layer, the highest relative percentage content of water-soluble and exchangeable selenium and total selenium (12.66%) was observed at a nitrogen application rate of 192 kg hmāˆ’2. Experimental treatment of black wheat with various concentrations of sodium selenite showed that selenium treatment at 50 Ī¼mol Lāˆ’1 significantly increased the reduced glutathione (GSH) levels in the leaves and roots of seedlings, where the GSH contents increased by 155.4% in the leaves and by 91.5% in the roots. Further analysis of the soilā€“black wheat system showed that nitrogen application in selenium-rich areas affected the soil selenium flow coefficient and morphological composition, thereby changing the enrichment coefficient for leaves (0.823), transport capacity from leaves to grains (ā€“0.530), and enrichment coefficient for roots (0.38). These changes ultimately affected the selenium concentration in the grains of black wheat

    Nutrient Cycling and Nitrogen Management Impact of Sowing Method and Soil Water Consumption on Yield Nitrogen Utilization in Dryland Wheat (<i>Triticum aestivum</i> L.)

    No full text
    The current study was designed to investigate the best sowing method that encourages dry matter accumulation to increase dryland wheat yield, grain quality, and protein content. Three different seeding methods were applied: (I) wide-space sowing (WSS), (II) furrow sowing, and (III) drill sowing. Two nitrogen levels, namely low nitrogen (N1) and high nitrogen (N2), were also applied, and the pure nitrogen was 150 kg haāˆ’1 and 210 kg haāˆ’1, respectively. Wide-space sowing significantly increased the ears and yield production, the maximum, and average grain-filling rate while furrow sowing delayed the disappearance of the population after anthesis, increased the duration of grain filling, and then significantly increased the number of spikes and the 1000-grain weight increased, respectively. Drill sowing compared to wide-space sowing significantly increased the content of nitrogen in the grain of the nitrogen harvest index, and it increased the content of protein and the yield of protein, respectively. In addition, the grain yield and protein yield of wide-precision sowing were significantly higher than that of trench sowing. Our findings suggest that wide-space sowing was beneficial for increasing water consumption during the growth period, increasing the tiller dynamics, improving the plant dry matter quality, and increasing the grain protein

    Effect of incorporating nonlanthanoidal indium on optical properties of ferroelectric Bi4Ti3O12 thin films

    No full text
    Bi4Ti3O12 (BTO) and Bi3.25In0.75Ti3O12 (BTO:In) thin films were prepared on fused quartz and LaNiO3/Si (LNO) substrates by chemical solution deposition (CSD). Their microstructures, ferroelectric and optical properties were investigated by X-ray diffraction, scanning electron microscope, ferroelectric tester and UV-visible-NIR spectrophotometer, respectively. The optical band-gaps of the films were found to be 3.64 and 3.45 eV for the BTO and BTO:In films, respectively. Optical constants (refractive indexes and extinction coefficients) were determined from the optical transmittance spectra using the envelope method. Following the single electronic oscillator model, the single oscillator energy E-0, the dispersion energy E-d, the average interband oscillator wavelength lambda(0), the average oscillator strength S-0, the refractive index dispersion parameter (E-0/S-0), the chemical bonding quantity beta, and the long wavelength refractive index n(infinity) were obtained and analyzed. Both the refractive index and extinction coefficient of the BTO:In films are smaller than those of the BTO films. Furthermore, the refractive index dispersion parameter (E-0/S-0) increases and the chemical bonding quantity beta decreases in the BTO and BTO:In films compared with those of bulk. (C) 2007 Published by Elsevier B.V
    corecore