2 research outputs found

    Interlaced spin grating for optical wave filtering

    Full text link
    Interlaced Spin Grating is a scheme for the preparation of spectro-spatial periodic absorption gratings in a inhomogeneously broadened absorption profile. It relies on the optical pumping of atoms in a nearby long-lived ground state sublevel. The scheme takes advantage of the sublevel proximity to build large contrast gratings with unlimited bandwidth and preserved average optical depth. It is particularly suited to Tm-doped crystals in the context of classical and quantum signal processing. In this paper, we study the optical pumping dynamics at play in an Interlaced Spin Grating and describe the corresponding absorption profile shape in an optically thick atomic ensemble. We show that, in Tm:YAG, the diffraction efficiency of such a grating can reach 18.3% in the small angle, and 11.6% in the large angle configuration when the excitation is made of simple pulse pairs, considerably outperforming conventional gratings.Comment: 11 pages, 13 figures in Physical Review A, 201

    Time reversal of light by linear dispersive filtering near atomic resonance

    Get PDF
    Based on the similarity of paraxial diffraction and dispersion mathematical descriptions, the temporal imaging of optical pulses combines linear dispersive filters and quadratic phase modulations operating as time lenses. We consider programming a dispersive filter near atomic resonance in rare earth ion doped crystals, which leads to unprecedented high values of dispersive power. This filter is used in an approximate imaging scheme, combining a single time lens and a single dispersive section and operating as a time reversing device, with potential applications in radio-frequency signal processing. This scheme is closely related to three-pulse photon echo with chirped pulses but the connection with temporal imaging and dispersive filtering emphasizes new features.Comment: 21 pages, 11 figure
    corecore