97 research outputs found

    SPI Measurements of Galactic 26Al

    Full text link
    The precision measurement of the 1809 keV gamma-ray line from Galactic 26^{26}Al is one of the goals of the SPI spectrometer on INTEGRAL with its Ge detector camera. We aim for determination of the detailed shape of this gamma-ray line, and its variation for different source regions along the plane of the Galaxy. Data from the first part of the core program observations of the first mission year have been inspected. A clear detection of the \Al line at about 5--7 σ\sigma significance demonstrates that SPI will deepen \Al studies. The line intensity is consistent with expectations from previous experiments, and the line appears narrower than the 5.4 keV FWHM reported by GRIS, more consistent with RHESSI's recent value. Only preliminary statements can be made at this time, however, due to the multi-component background underlying the signal at \about 40 times higher intensity than the signal from Galactic 26^{26}Al.Comment: 5 pages, 8 figures; accepted for publication in A&A (special INTEGRAL volume

    Light Element Evolution and Cosmic Ray Energetics

    Get PDF
    Using cosmic-ray energetics as a discriminator, we investigate evolutionary models of LiBeB. We employ a Monte Carlo code which incorporates the delayed mixing into the ISM both of the synthesized Fe, due to its incorporation into high velocity dust grains, and of the cosmic-ray produced LiBeB, due to the transport of the cosmic rays. We normalize the LiBeB production to the integral energy imparted to cosmic rays per supernova. Models in which the cosmic rays are accelerated mainly out of the average ISM significantly under predict the measured Be abundance of the early Galaxy, the increase in [O/Fe] with decreasing [Fe/H] notwithstanding. We suggest that this increase could be due to the delayed mixing of the Fe. But, if the cosmic-ray metals are accelerated out of supernova ejecta enriched superbubbles, the measured Be abundances are consistent with a cosmic-ray acceleration efficiency that is in very good agreement with the current epoch data. We also find that neither the above cosmic-ray origin models nor a model employing low energy cosmic rays originating from the supernovae of only very massive progenitors can account for the 6^6Li data at values of [Fe/H] below −-2.Comment: latex 19 pages, 2 tables, 10 eps figures, uses aastex.cls natbib.sty Submitted to the Astrophysical Journa

    Deep Transfer Learning on Satellite Imagery Improves Air Quality Estimates in Developing Nations

    Get PDF
    Urban air pollution is a public health challenge in low- and middle-income countries (LMICs). However, LMICs lack adequate air quality (AQ) monitoring infrastructure. A persistent challenge has been our inability to estimate AQ accurately in LMIC cities, which hinders emergency preparedness and risk mitigation. Deep learning-based models that map satellite imagery to AQ can be built for high-income countries (HICs) with adequate ground data. Here we demonstrate that a scalable approach that adapts deep transfer learning on satellite imagery for AQ can extract meaningful estimates and insights in LMIC cities based on spatiotemporal patterns learned in HIC cities. The approach is demonstrated for Accra in Ghana, Africa, with AQ patterns learned from two US cities, specifically Los Angeles and New York

    Chiral separation of substituted phenylalanine analogues using chiral palladium phosphine complexes with enantioselective liquid–liquid extraction

    Get PDF
    Chiral palladium phosphine complexes have been employed in the chiral separation of amino acids and phenylalanine analogues in particular. The use of (S)-xylyl-BINAP as a ligand for the palladium complex in enantioselective liquid–liquid extraction allowed the separation of the phenylalanine analogues with the highest operational selectivity reported to date. 31P NMR, FTIR, FIR, UV-Vis, CD and Raman spectroscopy methods have been applied to gain insight into the binding mechanism of the amino acid substrates with the chiral palladium phosphine complexes. A complexation in a bidentate fashion is proposed.

    Heliospheric Transport of Neutron-Decay Protons

    Get PDF
    We report on new simulations of the transport of energetic protons originating from the decay of energetic neutrons produced in solar flares. Because the neutrons are fast-moving but insensitive to the solar wind magnetic field, the decay protons are produced over a wide region of space, and they should be detectable by current instruments over a broad range of longitudes for many hours after a sufficiently large gamma-ray flare. Spacecraft closer to the Sun are expected to see orders-of magnitude higher intensities than those at the Earth-Sun distance. The current solar cycle should present an excellent opportunity to observe neutron-decay protons with multiple spacecraft over different heliographic longitudes and distances from the Sun.Comment: 12 pages, 4 figures, to be published in special issue of Solar Physic

    Electron-positron Annihilation Lines and Decaying Sterile Neutrinos

    Full text link
    If massive sterile neutrinos exist, their decays into photons and/or electron-positron pairs may give rise to observable consequences. We consider the possibility that MeV sterile neutrino decays lead to the diffuse positron annihilation line in the Milky Way center, and we thus obtain bounds on the sterile neutrino decay rate Γe≥10−28\Gamma_e \ge 10^{-28} s−1^{-1} from relevant astrophysical/cosmological data. Also, we expect a soft gamma flux of 1.2×10−4−9.7×10−41.2 \times 10^{-4}-9.7 \times 10^{-4} ph cm−2^{-2} s−1^{-1} from the Milky Way center which shows up as a small MeV bump in the background photon spectrum. Furthermore, we estimate the flux of active neutrinos produced by sterile neutrino decays to be 0.02−0.10.02-0.1 cm−2^{-2} s−1^{-1} passing through the earth.Comment: Accepted for publication in Astrophysics & Space Scienc

    Svestka's Research: Then and Now

    Full text link
    Zdenek Svestka's research work influenced many fields of solar physics, especially in the area of flare research. In this article I take five of the areas that particularly interested him and assess them in a "then and now" style. His insights in each case were quite sound, although of course in the modern era we have learned things that he could not readily have envisioned. His own views about his research life have been published recently in this journal, to which he contributed so much, and his memoir contains much additional scientific and personal information (Svestka, 2010).Comment: Invited review for "Solar and Stellar Flares," a conference in honour of Prof. Zden\v{e}k \v{S}vestka, Prague, June 23-27, 2014. This is a contribution to a Topical Issue in Solar Physics, based on the presentations at this meeting (Editors Lyndsay Fletcher and Petr Heinzel

    Decaying into the Hidden Sector

    Full text link
    The existence of light hidden sectors is an exciting possibility that may be tested in the near future. If DM is allowed to decay into such a hidden sector through GUT suppressed operators, it can accommodate the recent cosmic ray observations without over-producing antiprotons or interfering with the attractive features of the thermal WIMP. Models of this kind are simple to construct, generic and evade all astrophysical bounds. We provide tools for constructing such models and present several distinct examples. The light hidden spectrum and DM couplings can be probed in the near future, by measuring astrophysical photon and neutrino fluxes. These indirect signatures are complimentary to the direct production signals, such as lepton jets, predicted by these models.Comment: 40 pages, 5 figure
    • …
    corecore