834 research outputs found

    Demonstration of Einstein-Podolsky-Rosen Steering with Enhanced Subchannel Discrimination

    Full text link
    Einstein-Podolsky-Rosen (EPR) steering describes a quantum nonlocal phenomenon in which one party can nonlocally affect the other's state through local measurements. It reveals an additional concept of quantum nonlocality, which stands between quantum entanglement and Bell nonlocality. Recently, a quantum information task named as subchannel discrimination (SD) provides a necessary and sufficient characterization of EPR steering. The success probability of SD using steerable states is higher than using any unsteerable states, even when they are entangled. However, the detailed construction of such subchannels and the experimental realization of the corresponding task are still technologically challenging. In this work, we designed a feasible collection of subchannels for a quantum channel and experimentally demonstrated the corresponding SD task where the probabilities of correct discrimination are clearly enhanced by exploiting steerable states. Our results provide a concrete example to operationally demonstrate EPR steering and shine a new light on the potential application of EPR steering.Comment: 16 pages, 8 figures, appendix include

    3-Benzyl-1-methyl­imidazolium picrate

    Get PDF
    In the title salt, C11H13N2 +·C6H2N3O7 −, the dihedral angles between the benzene ring in the cation and the imidazolium ring and the benzene ring of the picrate anion are 113.7 (2) and 116.3 (2)°, respectively. The imidazolium ring is nearly parallel to the benzene ring of the picrate anion, the dihedral angle between the planes being 2.6 (1)°. The nitro groups in the picrate anions are disordered (occupancy ratio 0.54:0.46). The crystal packing is stabilized by weak C—H⋯O inter­actions between the cation–anion pairs

    Modified Sequential Therapy Regimen versus Conventional Triple Therapy for Helicobacter Pylori Eradication in Duodenal Ulcer Patients in China: A Multicenter Clinical Comparative Study

    Get PDF
    Objective. Antimicrobial resistance has decreased eradication rates for Helicobacter pylori infection worldwide. To observe the effect of eradicating Helicobacter pylori (H. pylori) and the treatment of duodenal ulcer by 2 kinds of modified sequential therapy through comparing with that of 10-day standard triple therapy. Methods. A total of 210 patients who were confirmed in duodenal ulcer active or heal period by gastroscopy and H. pylori positive confirmed by rapid urease test, serum anti-H. pylori antibody (ELASE), or histological examination enrolled in the study. All the patients were randomly divided into three groups: group A (70 cases) and group B (70 cases) were provided 10-day modified sequential therapy; group C (70 cases) was provided 10-day standard triple therapy. Patients of group A received 20 mg of Esomeprazole, 500 mg of Clarithromycin for the first 5 days, followed by 20 mg of Esomeprazole, 500 mg of Clarithromycin, and 1000 mg of Amoxicillin for the remaining 5 days. Group B received 20 mg of Esomeprazole, 1000 mg of Amoxicillin for the first 5 days, followed by 20 mg of Esomeprazole, 500 mg of Clarithromycin, and 1000 mg of Amoxicillin for the remaining 5 days. Group C received 20 mg of Esomeprazole, 500 mg of Clarithromycin, and 1000 mg of Amoxicillin for standard 10-day therapy. All drugs were given twice daily. H. pylori eradication rate was checked four to eight weeks after taking the medicine by using a 13C urea breath test. In the first, second, third, seventh, twenty-first, thirty-fifth days respectively, the symptoms of patients such as epigastric gnawing, burning pain, and acidity were evaluated simultaneously. Results. Overall, 210 patients accomplished all therapy schemes, 9 case patients were excluded. The examination result indicated that the H. pylori eradication rate of each group was as follows: group A 92.5% (62/67), group B 86.8% (59/68), and group C 78.8% (52/66). The H. pylori eradication rate of group A was slightly higher than group B (P < 0.05) and both of them were obviously higher than group C (P < 0.05). Modified sequential therapy was significantly more effective in patients with clarithromycin-resistant strains (80%/67% versus 31%; P = 0.02). Symptoms improvement: all the three groups could improve the symptoms such as epigastric gnawing, burning pain, and acidity since the first day. There was no significant difference in total score descending of symptoms between each group (P > 0.05). Conclusions. All the three therapy schemes could alleviate symptoms of duodenal ulcer patients in China efficiently. But as far as eradicating H. pylori is concerned, the modified sequential therapy was better than standard triple therapy, especially the therapy scheme used in group A

    Experimental test of high-dimensional quantum contextuality based on contextuality concentration

    Full text link
    Contextuality is a distinctive feature of quantum theory and a fundamental resource for quantum computation. However, existing examples of contextuality in high-dimensional systems lack the necessary robustness required in experiments. Here we address this problem by identifying a family of noncontextuality inequalities whose maximum quantum violation grows with the dimension of the system. At first glance, this contextuality is the single-system version of an extreme form of multipartite Bell nonlocality. What is interesting is that the single-system version achieves the same degree of contextuality but using a Hilbert space of {\em lower} dimension. That is, contextualize "concentrates" as the degree of contextuality per dimension increases. We demonstrate the usefulness of this result by showing the experimental observation of contextuality in a single system of dimension seven. By simulating sequences of quantum ideal measurements in an all-optical setup using projective measurements on structured light, we report a violation of 68.7 standard deviations of the simplest of the noncontextuality inequalities identified. Our results advance the investigation of high-dimensional contextuality, its connection to the Clifford algebra, and its role in quantum computation.Comment: 7+5 pages, 4+2 figures. Comments are welcom
    corecore