44,327 research outputs found

    Asymptotic stability of wave patterns to compressible viscous and heat-conducting gases in the half space

    Full text link
    We study the large-time behavior of solutions to the compressible Navier-Stokes equations for a viscous and heat-conducting ideal polytropic gas in the one-dimensional half-space. A rarefaction wave and its superposition with a non-degenerate stationary solution are shown to be asymptotically stable for the outflow problem with large initial perturbation and general adiabatic exponent.Comment: Contact [email protected] for any comments. arXiv admin note: substantial text overlap with arXiv:1503.0392

    The numerical operator method to the real time dynamics of currents through the nanostructures with different topologies

    Full text link
    We present the numerical operator method designed for the real time dynamics of currents through nanostructures beyond the linear response regime. We apply this method to the transient and stationary currents through nanostructures with different topologies, e.g., the flakes of square and honeycomb lattices. We find a quasi-stationary stage with a life proportional to the flake size in the transient currents through the square flakes, but this quasi-stationary stage is destroyed in the presence of disorder. However, there is no quasi-stationary stage in the transient currents through the honeycomb flakes, showing that the transient current depends strongly upon the topologies of the nanostructures. We also study the stationary current by taking the limit of the current at long times. We find that the stationary current through a square flake increases smoothly as the voltage bias increasing. In contrast, we find a threshold voltage in the current-voltage curve through a honeycomb flake, indicating a gap at the Fermi energy of a honeycomb flake.Comment: 13 pages, 4 figure

    How to interpret a discovery or null result of the 0ν2β0\nu 2\beta decay

    Get PDF
    The Majorana nature of massive neutrinos will be crucially probed in the next-generation experiments of the neutrinoless double-beta (0ν2β0\nu 2\beta) decay. The effective mass term of this process, mee\langle m\rangle^{}_{ee}, may be contaminated by new physics. So how to interpret a discovery or null result of the 0ν2β0\nu 2\beta decay in the foreseeable future is highly nontrivial. In this paper we introduce a novel three-dimensional description of mee|\langle m\rangle_{ee}^{}|, which allows us to see its sensitivity to the lightest neutrino mass and two Majorana phases in a transparent way. We take a look at to what extent the free parameters of mee|\langle m\rangle_{ee}^{}| can be well constrained provided a signal of the 0ν2β0\nu 2\beta decay is observed someday. To fully explore lepton number violation, all the six effective Majorana mass terms mαβ\langle m\rangle_{\alpha\beta}^{} (for α,β=e,μ,τ\alpha, \beta = e, \mu, \tau) are calculated and their lower bounds are illustrated with the two-dimensional contour figures. The effect of possible new physics on the 0ν2β0\nu 2\beta decay is also discussed in a model-independent way. We find that the result of mee|\langle m\rangle_{ee}^{}| in the normal (or inverted) neutrino mass ordering case modified by the new physics effect may somewhat mimic that in the inverted (or normal) mass ordering case in the standard three-flavor scheme. Hence a proper interpretation of a discovery or null result of the 0ν2β0\nu 2\beta decay may demand extra information from some other measurements.Comment: 13 pages, 6 figures, Figures and references update
    corecore