14,904 research outputs found
Retrieval of phase memory in two independent atomic ensembles by Raman process
In spontaneous Raman process in atomic cell at high gain, both the Stokes
field and the accompanying collective atomic excitation (atomic spin wave) are
coherent. We find that, due to the spontaneous nature of the process, the
phases of the Stokes field and the atomic spin wave change randomly from one
realization to another but are anti-correlated. The phases of the atomic
ensembles are read out via another Raman process at a later time, thus
realizing phase memory in atoms. The observation of phase correlation between
the Stokes field and the collective atomic excitations is an important step
towards macroscopic EPR-type entanglement of continuous variables between light
and atoms
Optimal design of nonuniform FIR transmultiplexer using semi-infinite programming
This paper considers an optimum nonuniform FIR transmultiplexer design problem subject to specifications in the frequency domain. Our objective is to minimize the sum of the ripple energy for all the individual filters, subject to the specifications on amplitude and aliasing distortions, and to the passband and stopband specifications for the individual filters. This optimum nonuniform transmultiplexer design problem can be formulated as a quadratic semi-infinite programming problem. The dual parametrization algorithm is extended to this nonuniform transmultiplexer design problem. If the lengths of the filters are sufficiently long and the set of decimation integers is compatible, then a solution exists. Since the problem is formulated as a convex problem, if a solution exists, then the solution obtained is unique and the local solution is a global minimum
Coherent population trapping and dynamical instability in the nonlinearly coupled atom-molecule system
We study the possibility of creating a coherent population trapping (CPT)
state, involving free atomic and ground molecular condensates, during the
process of associating atomic condensate into molecular condensate. We
generalize the Bogoliubov approach to this multi-component system and study the
collective excitations of the CPT state in the homogeneous limit. We develop a
set of analytical criteria based on the relationship among collisions involving
atoms and ground molecules, which are found to strongly affect the stability
properties of the CPT state, and use it to find the stability diagram and to
systematically classify various instabilities in the long-wavelength limit.Comment: 11 pages, 8 figure
A note on entropic force and brane cosmology
Recently Verlinde proposed that gravity is an entropic force caused by
information changes when a material body moves away from the holographic
screen. In this note we apply this argument to brane cosmology, and show that
the cosmological equation can be derived from this holographic scenario.Comment: 5 pages, no figures;references adde
Distorted HI Gas in the Widely Separated LIRG Arp 256
We present new interferometric HI and CO (1-0) observations of the luminous
infrared source, Arp 256. Arp 256 consists of two spiral galaxies in an early
stage of merging, with a projected nuclear separation of 29 kpc (54") and an
infrared luminosity of 2.0E11 L_sun. Despite the large separation of the
galaxies' nuclei and mildly disrupted stellar components, the HI disks are
found to be strongly disrupted, and the southern galaxy in Arp 256 shows an
elevated star formation efficiency, which is consistent with a nuclear
starburst. Both of these results run contrary to expectations, posing
interesting questions on the physical mechanisms involved in stimulating star
formation during an interaction.Comment: 19 pages, 7 figures. Accepted for publication in AJ. Author added.
Full resolution figures available at
http://astro.uchicago.edu/home/web/jchen/arp25
Modified (A)dS Schwarzschild black holes in Rainbow spacetime
A modified (Anti-)de Sitter Schwarzschild black hole solution is presented in
the framework of rainbow gravity with a cosmological constant. Its
thermodynamical properties are investigated. In general the temperature of
modified black holes is dependent on the energy of probes which take the
measurement. However, a notion of intrinsic temperature can be introduced by
identifying these probes with radiation particles emitted from black holes. It
is interesting to find that the Hawking temperature of this sort of black holes
can be reproduced by employing the extended uncertainty principle and modified
dispersion relations to the ordinary (A)dS Schwarzschild black holes.Comment: 11 pages. The version to appear in CQ
- …