1,686 research outputs found

    Application of meso-2,3-Dimercaptosuccinic Acid Self-assembled Gold Electrode for Voltammetric Determination of Copper

    Get PDF
    Fabrication and electrochemical characteristics of the meso-2,3-dimercaptosuccinic acid (DMSA) self-assembled monolayer modified gold electrode were described. The modified electrode exhibited increased sensitivity and selectivity for CuII compared to the bare gold electrode by stripping voltammetry and the peak current was proportional to the concentration of CuII in the range of 8.0 10–7 1.2 10–4 mol/L with the detection limit of 1.1 10–7 mol/L. The influence of coexistent substances was investigated and the modified electrode showed good selectivity for copper determination. The DMSA/Au electrode was applied for CuII determination in a tap water sample with satisfactory results, with the recovery in the range from 99.7 to 101.1 %

    Characterization of a sensitive biosensor based on an unmodified DNA and gold nanoparticle composite and its application in diquat determination

    Get PDF
    AbstractDNA usually adsorbs gold nanoparticles by virtue of mercapto or amino groups at one end of a DNA molecule. However, in this paper, we report a sensitive biosensor constructed using unmodified DNA molecules with consecutive adenines (CA DNA) and gold nanoparticles (GNPs). The CA DNA–GNP composite was fabricated on gold electrodes and characterized by using of scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and the electrochemical method. Using an electrochemical quartz crystal microbalance (EQCM), the mechanism by which the CA DNA and GNPs combined was also studied. The modified electrode exhibited an ultrasensitive response to diquat. Differential pulse voltammetry (DPV) was used to study the linear relationships between concentrations and reduction peak currents, ranging from 1.0×10−9M to 1.2×10−6M. The detection limit of it is 2.0×10−10M. The feasibility of the proposed assay for use in human urine and grain was investigated, and the satisfactory results were obtained

    Identification of subtype-specific metastasis-related genetic signatures in sarcoma

    Get PDF
    Background: Sarcomas are heterogeneous rare malignancies constituting approximately 1% of all solid cancers in adults and including more than 70 histological and molecular subtypes with different pathological and clinical development characteristics. Method: We identified prognostic biomarkers of sarcomas by integrating clinical information and RNA-seq data from TCGA and GEO databases. In addition, results obtained from cell cycle, cell migration, and invasion assays were used to assess the capacity for Tanespimycin to inhibit the proliferation and metastasis of sarcoma. Results: Sarcoma samples (N = 536) were divided into four pathological subtypes including DL (dedifferentiated liposarcoma), LMS (leiomyosarcoma), UPS (undifferentiated pleomorphic sarcomas), and MFS (myxofibrosarcoma). RNA-seq expression profile data from the TCGA dataset were used to analyze differentially expressed genes (DEGs) within metastatic and non-metastatic samples of these four sarcoma pathological subtypes with DEGs defined as metastatic-related signatures (MRS). Prognostic analysis of MRS identified a group of genes significantly associated with prognosis in three pathological subtypes: DL, LMS, and UPS. ISG15, NUP50, PTTG1, SERPINE1, and TSR1 were found to be more likely associated with adverse prognosis. We also identified Tanespimycin as a drug exerting inhibitory effects on metastatic LMS subtype and therefore can serve a potential treatment for this type of sarcoma. Conclusions: These results provide new insights into the pathogenesis, diagnosis, treatment, and prognosis of sarcomas and provide new directions for further study of sarcoma

    Local Gene Silencing of Monocyte Chemoattractant Protein-1 Prevents Vulnerable Plaque Disruption in Apolipoprotein E-Knockout Mice

    Get PDF
    Monocyte chemoattractant protein-1 (MCP-1), a CC chemokine (CCL2), has been demonstrated to play important roles in atherosclerosis and becoming an important therapeutic target for atherosclerosis. The present study was undertaken to test the hypothesis that local RNAi of MCP-1 by site-specific delivery of adenovirus-mediated small hairpin RNA (shRNA) may enhance plaque stability and prevent plaque disruption in ApoE−/− mice. We designed an adenovirus-mediated shRNA against mouse MCP-1 (rAd5-MCP-1-shRNA). Male apolipoprotein E-knockout (ApoE−/−) mice (n = 120) were fed a high-fat diet and vulnerable plaques were induced by perivascular placement of constrictive collars around the carotid artery, intraperitoneal injection of lipopolysaccharide and stress stimulation. Mice were randomly divided into RNA interference (Ad-MCP-1i) group receiving local treatment of rAd5-MCP-1-shRNA suspension, Ad-EGFP group receiving treatment of rAd5-mediated negative shRNA and mock group receiving treatment of saline. Two weeks after treatment, plaque disruption rates were significantly lower in the Ad-MCP-1i group than in the Ad-EGFP group (13.3% vs. 60.0%, P = 0.01), and local MCP-1 expression was significantly inhibited in the Ad-MCP-1i group confirmed by immunostaining, qRT-PCR and western blot (P<0.001). Compared with the Ad-EGFP group, carotid plaques in the Ad-MCP-1i group showed increased levels of collagen and smooth muscle cells, and decreased levels of lipid and macrophages. The expression of inflammatory cytokines and activities of matrix metalloproteinases (MMPs) were lower in the Ad-MCP-1i group than in the Ad-EGFP group. In conclusion, site-specific delivery of adenoviral-mediated shRNA targeting mouse MCP-1 downregulated MCP-1 expression, turned a vulnerable plaque into a more stable plaque phenotype and prevented plaque disruption. A marked suppression of the local inflammatory cytokine expression may be the central mechanism involved

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore