4,157 research outputs found

    Group Divisible Codes and Their Application in the Construction of Optimal Constant-Composition Codes of Weight Three

    Full text link
    The concept of group divisible codes, a generalization of group divisible designs with constant block size, is introduced in this paper. This new class of codes is shown to be useful in recursive constructions for constant-weight and constant-composition codes. Large classes of group divisible codes are constructed which enabled the determination of the sizes of optimal constant-composition codes of weight three (and specified distance), leaving only four cases undetermined. Previously, the sizes of constant-composition codes of weight three were known only for those of sufficiently large length.Comment: 13 pages, 1 figure, 4 table

    List Decodability at Small Radii

    Full text link
    A(n,d,e)A'(n,d,e), the smallest \ell for which every binary error-correcting code of length nn and minimum distance dd is decodable with a list of size \ell up to radius ee, is determined for all d2e3d\geq 2e-3. As a result, A(n,d,e)A'(n,d,e) is determined for all e4e\leq 4, except for 42 values of nn.Comment: to appear in Designs, Codes, and Cryptography (accepted October 2010

    Violating Bell Inequalities Maximally for Two dd-Dimensional Systems

    Full text link
    We investigate the maximal violation of Bell inequalities for two dd-dimensional systems by using the method of Bell operator. The maximal violation corresponds to the maximal eigenvalue of the Bell operator matrix. The eigenvectors corresponding to these eigenvalues are described by asymmetric entangled states. We estimate the maximum value of the eigenvalue for large dimension. A family of elegant entangled states Ψ>app|\Psi>_{\rm app} that violate Bell inequality more strongly than the maximally entangled state but are somewhat close to these eigenvectors is presented. These approximate states can potentially be useful for quantum cryptography as well as many other important fields of quantum information.Comment: 6 pages, 1 figure. Revised versio

    Berry phase and quantum criticality in Yang--Baxter systems

    Full text link
    Spin interaction Hamiltonians are obtained from the unitary Yang--Baxter R˘\breve{R}-matrix. Based on which, we study Berry phase and quantum criticality in the Yang--Baxter systems.Comment: 7 pages, no figures. Accepted for publication in Annals of Physic
    corecore