20 research outputs found

    Comparison of Efficacy of Deep Brain Stimulation of Different Targets in Parkinson's Disease: A Network Meta-Analysis

    Get PDF
    Background: Deep brain stimulation (DBS) is considered an effective treatment option for Parkinson's disease (PD). Several studies have demonstrated the efficacy of neurostimulation in patients with advanced PD. The subthalamic nucleus (STN), the internal globus pallidus (GPi), ventral intermediate nucleus (Vim), and pedunculopontine nucleus (PPN) are reportedly effective DBS targets for control of Parkinsonian tremors. However, there is no consensus on the ideal target for DBS in patients with Parkinson's disease. Only a few studies have directly compared the efficacy of DBS of the Vim, STN, and GPi. Therefore, we searched PubMed, Embase, Cochrane Library, and other databases for observational studies, extracted data on unified Parkinson's disease rating scale (UPDRS) scores and performed a comprehensive network meta-analysis of different strategies of DBS and compared the efficiency of DBS at different targets.Methods: Forest plot was used to examine the overall efficiency of DBS; cumulative probability value was used to rank the strategies under examination. A node-splitting model was employed to assess consistency of reported outcomes inconsistency. A total of 16 studies which focused on UPDRS improvement were included in the network meta-analysis.Results: By comparing the overall efficiency associated with each target, we confirmed the efficacy of DBS therapy in PD. Our findings revealed similar efficacy of DBS targeted at GPi and STN in the on-medication phase [GPi-3.9 (95% CI −7.0 to −0.96); STN-3.1 (−5.9 to −0.38)]; however, in the off-medication phase, Vim-targeted DBS was associated with better improvement in UPDRS scores and could be a choice as a DBS target for tremor-dominant Parkinsonism.Conclusions: Our findings will help improve clinical application of DBS

    Dysregulation of Pain- and Emotion-Related Networks in Trigeminal Neuralgia

    Full text link
    Classical trigeminal neuralgia (TN) is a severe neuropathic facial pain disorder associated with increased risks of anxiety and depression. Converging evidence suggests that chronic pain pathophysiology involves dysfunctional pain-related and emotion-related networks. However, whether these systems are also among the culprit networks for TN remains unclear. Here, we aimed to assess TN-related anatomical and functional brain anomalies in pain-related and emotion-related networks. We investigated differences in gray matter (GM) volume and the related resting-state functional connectivity (rsFC) between 29 classical TN patients and 34 matched healthy controls. Relationships between brain measurement alterations, clinical pain and emotional states were identified. A longitudinal observation was further conducted to determine whether alterations in the brain could renormalize following pain relief. Reduced GM volumes in the bilateral amygdala, periaqueductal gray (PAG) and right insula were found in TN patients compared with healthy control subjects. Whole-brain rsFC analyses with the four above-mentioned anatomical regions as seeds identified three significantly altered functional circuits, including amygdala-DLPFC, amygdala-mPFC and amygdala-thalamus/putamen circuitry. The amygdala-DLPFC and amygdala-mPFC circuits were associated with clinical pain duration and emotional state ratings, respectively. Further longitudinal analysis found that rsFC strength abnormalities in two fronto-limbic circuits (left amygdala/left DLPFC and right amygdala/right PFC) were resolved after pain relief. Together, structural and functional deficits in pain-related and emotion-related networks were associated with TN patients, as demonstrated by our multimodal results. Pain relief had protective effects on brain functional connectivity within fronto-limbic circuits. Our study provides novel insights into the pathophysiology of TN, which may ultimately facilitate advances in TN intervention

    Phase-matching-induced near-chirp-free solitons in normal-dispersion fiber lasers

    Full text link
    Funding Information: This work was funded by the National Key R&D Program of China under Grant No. 2017YFA0303800; the National Natural Science Foundation of China under Grant No. 11874300; 11634010; the Fundamental Research Funds for the Central Universities under Grant No. 3102019JC008, 3102019PY002; and the Natural Science Foundation of Shaanxi Province under Grant No. 2019JQ-447. Publisher Copyright: © 2022, The Author(s).Direct generation of chirp-free solitons without external compression in normal-dispersion fiber lasers is a long-term challenge in ultrafast optics. We demonstrate near-chirp-free solitons with distinct spectral sidebands in normal-dispersion hybrid-structure fiber lasers containing a few meters of polarization-maintaining fiber. The bandwidth and duration of the typical mode-locked pulse are 0.74 nm and 1.95 ps, respectively, giving the time-bandwidth product of 0.41 and confirming the near-chirp-free property. Numerical results and theoretical analyses fully reproduce and interpret the experimental observations, and show that the fiber birefringence, normal-dispersion, and nonlinear effect follow a phase-matching principle, enabling the formation of the near-chirp-free soliton. Specifically, the phase-matching effect confines the spectrum broadened by self-phase modulation and the saturable absorption effect slims the pulse stretched by normal dispersion. Such pulse is termed as birefringence-managed soliton because its two orthogonal-polarized components propagate in an unsymmetrical “X” manner inside the polarization-maintaining fiber, partially compensating the group delay difference induced by the chromatic dispersion and resulting in the self-consistent evolution. The property and formation mechanism of birefringence-managed soliton fundamentally differ from other types of pulses in mode-locked fiber lasers, which will open new research branches in laser physics, soliton mathematics, and their related applications.Peer reviewe

    Cerebellar gray matter alterations predict deep brain stimulation outcomes in Meige syndrome

    Full text link
    Background: The physiopathologic mechanism of Meige syndrome (MS) has not been clarified, and neuroimaging studies centering on cerebellar changes in MS are scarce. Moreover, even though deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been recognized as an effective surgical treatment for MS, there has been no reliable biomarker to predict its efficacy. Objective: To characterize the volumetric alterations of gray matter (GM) in the cerebellum in MS and to identify GM measurements related to a good STN-DBS outcome. Methods: We used voxel-based morphometry and lobule-based morphometry to compare the regional and lobular GM differences in the cerebellum between 47 MS patients and 52 normal human controls (HCs), as well as between 31 DBS responders and 10 DBS non-responders. Both volumetric analyses were achieved using the Spatially Unbiased Infratentorial Toolbox (SUIT). Further, we performed partial correlation analyses to probe the relationship between the cerebellar GM changes and clinical scores. Finally, we plotted the receiver operating characteristic (ROC) curve to select biomarkers for MS diagnosis and DBS outcomes prediction. Results: Compared to HCs, MS patients had GM atrophy in lobule Crus I, lobule VI, lobule VIIb, lobule VIIIa, and lobule VIIIb. Compared to DBS responders, DBS non-responders had lower GM volume in the left lobule VIIIb. Moreover, partial correlation analyses revealed a positive relationship between the GM volume of the significant regions/lobules and the symptom improvement rate after DBS surgery. ROC analyses demonstrated that the GM volume of the significant cluster in the left lobule VIIIb could not only distinguish MS patients from HCs but also predict the outcomes of STN-DBS surgery with high accuracy. Conclusion: MS patients display bilateral GM shrinkage in the cerebellum relative to HCs. Regional GM volume of the left lobule VIIIb can be a reliable biomarker for MS diagnosis and DBS outcomes prediction

    The Long-Term Efficacy, Prognostic Factors, Safety, and Hospitalization Costs Following Denervation and Myotomy of the Affected Muscles and Deep Brain Stimulation in 94 Patients with Spasmodic Torticollis

    Full text link
    The surgical methods for treating spasmodic torticollis include the denervation and myotomy (DAM) of the affected muscles and deep brain stimulation (DBS). This study reports on the long-term efficacy, prognostic factors, safety, and hospitalization costs following these two procedures. We collected data from 94 patients with spasmodic torticollis, of whom 41 and 53 were treated with DAM and DBS, respectively, from June 2008 to December 2020 at the Chinese People’s Liberation Army General Hospital. We used the Tsui scale and the global outcome score of the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) to evaluate the preoperative and postoperative clinical conditions in all patients. We also determined the costs of hospitalization, prognostic factors, and serious adverse events following the two surgical procedures. The mean follow-up time was 68.83 months (range = 13–116). Both resection surgery and DBS showed good results in terms of Tsui (Z = −5.103, p = 0.000; Z = −6.210, p = 0.000) and TWSTRS scores (t = 8.762, p = 0.000; Z = −6.308, p = 0.000). Compared with the DAM group, the preoperative (47.71, range 24–67.25) and postoperative (18.57, range 0–53) TWSTRS scores in the DBS group were significantly higher (Z = −3.161, p = 0.002). We found no correlation between prognostic factors and patient age, gender, or disease duration for either surgical procedure. However, prognostic factors were related to the length of the postoperative follow-up period in the DBS surgery group (Z = −2.068, p = 0.039; Z = −3.287, p = 0.001). The mean hospitalization cost in the DBS group was 6.85 times that found in the resection group (Z = −8.284, p = 0.000). The total complication rate was 4.26%. We found both resection surgery and DBS showed good results in the patients with spasmodic torticollis. Compared with DAM, DBS had a greater improvement in TWSTRS score; however, it was more expensive. Prognostic factors were related to the length of the postoperative follow-up period in patients who underwent DBS surgery

    Large-area tungsten disulfide for ultrafast photonics

    Full text link
    Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have attracted significant interest in various optoelectronic applications due to their excellent nonlinear optical properties. One of the most important applications of TMDs is to be employed as an extraordinary optical modulation material (e.g., the saturable absorber (SA)) in ultrafast photonics. The main challenge arises while embedding TMDs into fiber laser systems to generate ultrafast pulse trains and thus constraints their practical applications. Herein, few-layered WS2 with a large-area was directly transferred on the facet of the pigtail and acted as a SA for erbium-doped fiber laser (EDFL) systems. In our study, WS2 SA exhibited remarkable nonlinear optical properties (e.g., modulation depth of 15.1% and saturable intensity of 157.6 MW cm(-2)) and was used for ultrafast pulse generation. The soliton pulses with remarkable performances (e.g., ultrashort pulse duration of 1.49 ps, high stability of 71.8 dB, and large pulse average output power of 62.5 mW) could be obtained in a telecommunication band. To the best of our knowledge, the average output power of the mode-locked pulse trains is the highest by employing TMD materials in fiber laser systems. These results indicate that atomically large-area WS2 could be used as excellent optical modulation materials in ultrafast photonics.Peer reviewe
    corecore