8 research outputs found

    Cooperation of Gata3, c-Myc and Notch in malignant transformation of double positive thymocytes

    No full text
    Gata transcription factors are critical regulators of proliferation and differentiation implicated in various human cancers, but specific genes activated by Gata proteins remain to be identified. We previously reported that enforced expression of Gata3 during T cell development in CD2-Gata3.transgenic mice induced CD4(+)CD8(+) double-positive (DP) T cell lymphoma. Here, we show that the presence of the DO11.10 T-cell receptor transgene, which directs DP cells towards the CD4 lineage, resulted in enhanced lymphoma development and a dramatic increase in thymocyte cell size in CD2-Gata3 transgenic mice. CD2-Gata3 DP cells expressed high levels of the proto-oncogene c-Myc but the Notch1 signaling pathway, which is known to induce c-Myc, was not activated. Gene expression profiling showed that in CD2-Gata3 lymphoma cells transcription of c-Myc and its target genes was further increased. A substantial fraction of CD2-Gata3 lymphomas had trisomy of chromosome 15, leading to an increased c-Myc gene dose. Interestingly, most lymphomas showed high expression of the Notch targets Deltex1 and Hes1, often due to activating Notch1 PEST domain mutations. Therefore, we conclude that enforced Gata3 expression converts DP thymocytes into a pre-malignant state, characterized by high c-Myc expression, whereby subsequent induction of Notch1 signaling cooperates to establish malignant transformation. The finding that Gata3 regulates c-Myc expression levels, in a direct or indirect fashion, may explain the parallel phenotypes of mice with overexpression or deficiency of either of the two transcription factors. (C) 2008 Elsevier Ltd. All rights reserved

    CTCF regulates cell cycle progression of alpha beta T cells in the thymus

    No full text
    The 11-zinc finger protein CCCTC-binding factor ( CTCF) is a highly conserved protein, involved in imprinting, longrange chromatin interactions and transcription. To investigate its function in vivo, we generated mice with a conditional Ctcf knockout allele. Consistent with a previous report, we find that ubiquitous ablation of the Ctcf gene results in early embryonic lethality. Tissue-specific inactivation of CTCF in thymocytes specifically hampers the differentiation of ab T cells and causes accumulation of late double-negative and immature single-positive cells in the thymus of mice. These cells are normally large and actively cycling, and contain elevated amounts of CTCF. In Ctcf knockout animals, however, these cells are small and blocked in the cell cycle due to increased expression of the cyclin-CDK inhibitors p21 and p27. Taken together, our results show that CTCF is required in a dose-dependent manner and is involved in cell cycle progression of ab T cells in the thymus. We propose that CTCF positively regulates cell growth in rapidly dividing thymocytes so that appropriate number of cells are generated before positive and negative selection in the thymus
    corecore